
Martin Grube

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/928577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photobiont Diversity in Lichen Symbioses From Extreme Environments. Frontiers in Microbiology, 2022, 13, 809804.	3.5	11
2	DNA Barcoding of Fresh and Historical Collections of Lichen-Forming Basidiomycetes in the Genera Cora and Corella (Agaricales: Hygrophoraceae): A Success Story?. Diversity, 2022, 14, 284.	1.7	3
3	The lichen market place. New Phytologist, 2022, 234, 1541-1543.	7.3	4
4	The Bacterial Community of the Foliose Macro-lichen Peltigera frigida Is More than a Mere Extension of the Microbiota of the Subjacent Substrate. Microbial Ecology, 2021, 81, 965-976.	2.8	19
5	The Lichens' Microbiota, Still a Mystery?. Frontiers in Microbiology, 2021, 12, 623839.	3.5	85
6	Lichens growing greenhouses en miniature. Microbial Cell, 2021, 8, 65-68.	3.2	2
7	Sequence data from isolated lichen-associated melanized fungi enhance delimitation of two new lineages within Chaetothyriomycetidae. Mycological Progress, 2021, 20, 911-927.	1.4	11
8	Antimicrobial-specific response from resistance gene carriers studied in a natural, highly diverse microbiome. Microbiome, 2021, 9, 29.	11.1	13
9	Assembly of Bacterial Genomes from the Metagenomes of Three Lichen Species. Microbiology Resource Announcements, 2020, 9, .	0.6	3
10	The beauty and the yeast: can the microalgae Dunaliella form a borderline lichen with Hortaea werneckii?. Symbiosis, 2020, 82, 123-131.	2.3	5
11	Contrasting Environmental Drivers Determine Biodiversity Patterns in Epiphytic Lichen Communities along a European Gradient. Microorganisms, 2020, 8, 1913.	3.6	11
12	Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES. Life, 2020, 10, 362.	2.4	16
13	Lichens redefined as complex ecosystems. New Phytologist, 2020, 227, 1281-1283.	7.3	150
14	Disentangling functional trait variation and covariation in epiphytic lichens along a continent-wide latitudinal gradient. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192862.	2.6	22
15	Integrative taxonomy confirms three species of Coniocarpon (Arthoniaceae) in Norway. MycoKeys, 2020, 62, 27-51.	1.9	8
16	Extremotolerant Black Fungi from Rocks and Lichens. , 2019, , 119-143.		6
17	Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca) Tj ETQq1	1 0,78431 11.1	14 rgBT /Over
18	Bacterial communities in an optional lichen symbiosis are determined by substrate, not algal photobionts. FEMS Microbiology Ecology, 2019, 95, .	2.7	13

#	Article	IF	CITATIONS
19	Could Hair-Lichens of High-Elevation Forests Help Detect the Impact of Global Change in the Alps?. Diversity, 2019, 11, 45.	1.7	12
20	Phylogenetic relationships of rock-inhabiting black fungi belonging to the widespread genera <i>Lichenothelia</i> and <i>Saxomyces</i> . Mycologia, 2019, 111, 127-160.	1.9	13
21	Plasticity of a holobiont: desiccation induces fasting-like metabolism within the lichen microbiota. ISME Journal, 2019, 13, 547-556.	9.8	37
22	Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME Journal, 2018, 12, 1032-1046.	9.8	197
23	Assessing recovery of biological soil crusts across a latitudinal gradient in Western Europe. Restoration Ecology, 2018, 26, 543-554.	2.9	17
24	Chemical analysis of the Alphaproteobacterium strain MOLA1416 associated with the marine lichen Lichina pygmaea. Phytochemistry, 2018, 145, 57-67.	2.9	9
25	Adaptions of Lichen Microbiota Functioning Under Persistent Exposure to Arsenic Contamination. Frontiers in Microbiology, 2018, 9, 2959.	3.5	16
26	Leaves of Indoor Ornamentals Are Biodiversity and Functional Hotspots for Fungi. Frontiers in Microbiology, 2018, 9, 2343.	3.5	9
27	Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae. Life, 2018, 8, 15.	2.4	63
28	Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus, 2018, 9, 167-175.	3.8	45
29	Enforced fungal-algal symbioses in alginate spheres. FEMS Microbiology Letters, 2018, 365, .	1.8	6
30	Arthoniaceae with reddish, K+ purple ascomata in Japan. Phytotaxa, 2018, 356, 19.	0.3	4
31	Marine cyanolichens from different littoral zones are associated with distinct bacterial communities. PeerJ, 2018, 6, e5208.	2.0	31
32	Differential sharing and distinct coâ€occurrence networks among spatially close bacterial microbiota of bark, mosses and lichens‬‬. Molecular Ecology, 2017, 26, 2826-2838.	3.9	79
33	Symbiotic Interplay of Fungi, Algae, and Bacteria within the Lung Lichen <i>Lobaria pulmonaria</i> L. Hoffm. as Assessed by State-of-the-Art Metaproteomics. Journal of Proteome Research, 2017, 16, 2160-2173.	3.7	43
34	<scp>ITS</scp> 1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Molecular Ecology, 2017, 26, 4811-4830.	3.9	66
35	Effects of Growth Media on the Diversity of Culturable Fungi from Lichens. Molecules, 2017, 22, 824.	3.8	47
36	Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome, 2017, 5, 82.	11.1	91

3

#	Article	IF	CITATIONS
37	Understanding Microbial Multi-Species Symbioses. Frontiers in Microbiology, 2016, 7, 180.	3.5	140
38	From Mouth to Model: Combining in vivo and in vitro Oral Biofilm Growth. Frontiers in Microbiology, 2016, 7, 1448.	3.5	25
39	Lichenized Fungi and the Evolution of Symbiotic Organization. Microbiology Spectrum, 2016, 4, .	3.0	43
40	Josef Hafellner — a Life Amongst Lichens and Their Parasites. Herzogia, 2016, 29, 213-234.	0.4	0
41	Accuracy of commercial kits and published primer pairs for the detection of periodontopathogens. Clinical Oral Investigations, 2016, 20, 2515-2528.	3.0	17
42	Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). Fungal Diversity, 2016, 80, 285-300.	12.3	46
43	Arthonia parietinaria – A common but frequently misunderstood lichenicolous fungus on species of the Xanthoria parietina-group. Fungal Biology, 2016, 120, 1341-1353.	2.5	16
44	High Life Expectancy of Bacteria on Lichens. Microbial Ecology, 2016, 72, 510-513.	2.8	17
45	<i>Schizoxylon</i> as an experimental model for studying interkingdom symbiosis. FEMS Microbiology Ecology, 2016, 92, fiw165.	2.7	8
46	Are lichens potential natural reservoirs for plant pathogens?. Molecular Plant Pathology, 2016, 17, 143-145.	4.2	7
47	Review – Lichen-Associated Bacteria as a Hot Spot of Chemodiversity: Focus on Uncialamycin, a Promising Compound for Future Medicinal Applications. Planta Medica, 2016, 82, 1143-1152.	1.3	28
48	Cyaneodimycin, a Bioactive Compound Isolated from the Culture of <i>Streptomyces cyaneofuscatus</i> Associated with <i>Lichina confinis</i> . European Journal of Organic Chemistry, 2016, 2016, 3977-3982.	2.4	17
49	Bacteria and Non-lichenized Fungi Within Biological Soil Crusts. Ecological Studies, 2016, , 81-100.	1.2	22
50	Microbiome change by symbiotic invasion in lichens. Environmental Microbiology, 2016, 18, 1428-1439.	3.8	41
51	Lichens as natural sources of biotechnologically relevant bacteria. Applied Microbiology and Biotechnology, 2016, 100, 583-595.	3.6	48
52	Towards a revised generic classification of lecanoroid lichens (Lecanoraceae, Ascomycota) based on molecular, morphological and chemical evidence. Fungal Diversity, 2016, 78, 293-304.	12.3	72
53	9 Lichen–Bacterial Interactions. , 2016, , 179-188.		5
54	Extremotolerant fungi from alpine rock lichens and their phylogenetic relationships. Fungal Diversity, 2016, 76, 119-142.	12.3	69

#	Article	IF	CITATIONS
55	The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 2016, 67, 995-1002.	4.8	424
56	The phylogenetic position of Coniarthonia and the transfer of Cryptothecia miniata to Myriostigma (Arthoniaceae, lichenized ascomycetes). Phytotaxa, 2015, 218, 128.	0.3	12
57	Littoral lichens as a novel source of potentially bioactive Actinobacteria. Scientific Reports, 2015, 5, 15839.	3.3	65
58	Evolution of complex symbiotic relationships in a morphologically derived family of lichenâ€forming fungi. New Phytologist, 2015, 208, 1217-1226.	7.3	105
59	A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria. Frontiers in Microbiology, 2015, 6, 398.	3.5	85
60	Analyzing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Frontiers in Microbiology, 2015, 6, 620.	3.5	65
61	Biotic Stress Shifted Structure and Abundance of Enterobacteriaceae in the Lettuce Microbiome. PLoS ONE, 2015, 10, e0118068.	2.5	51
62	Qualitative and Spatial Metabolite Profiling of Lichens by a LC–MS Approach Combined With Optimised Extraction. Phytochemical Analysis, 2015, 26, 23-33.	2.4	31
63	Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L Frontiers in Microbiology, 2015, 6, 53.	3.5	196
64	Community Analyses Uncover High Diversity of Lichenicolous Fungi in Alpine Habitats. Microbial Ecology, 2015, 70, 348-360.	2.8	31
65	Bacterial networks and coâ€occurrence relationships in the lettuce root microbiota. Environmental Microbiology, 2015, 17, 239-252.	3.8	241
66	Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME Journal, 2015, 9, 412-424.	9.8	238
67	The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Frontiers in Microbiology, 2014, 5, 175.	3.5	141
68	Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens?. Environmental Microbiology, 2014, 16, 3743-3752.	3.8	78
69	Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 2014, 5, 148.	3.5	498
70	The plant microbiome and its importance for plant and human health. Frontiers in Microbiology, 2014, 5, 491.	3.5	128
71	The Arthonialean challenge: Restructuring Arthoniaceae. Taxon, 2014, 63, 727-744.	0.7	65
72	Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics, 2014, 15, 549.	2.8	262

#	Article	IF	CITATIONS
73	Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra. Fungal Diversity, 2014, 64, 233-251.	12.3	57
74	Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodiversity and Conservation, 2014, 23, 1639-1658.	2.6	93
75	Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Annals of Botany, 2014, 114, 463-475.	2.9	94
76	Phylogenetic position and morphology of lichenized Trentepohliales (<scp>U</scp> lvophyceae,) Tj ETQq0 0 0 rgE 2014, 62, 170-186.	3T /Overloo 1.6	ck 10 Tf 50 6 26
77	Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodiversity and Conservation, 2014, 23, 1735-1755.	2.6	72
78	New insights into diversity and selectivity of trentepohlialean lichen photobionts from the extratropics. Symbiosis, 2014, 63, 31-40.	2.3	24
79	The symbiotic playground of lichen thalli - a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiology Ecology, 2013, 85, 313-323.	2.7	87
80	Halotolerance in Lichens: Symbiotic Coalition Against Salt Stress. , 2013, , 115-148.		14
81	The genetic structure of the cosmopolitan three-partner lichen <i>Ramalina farinacea</i> evidences the concerted diversification of symbionts. FEMS Microbiology Ecology, 2013, 83, 310-323.	2.7	64
82	The Lichen Connections of Black Fungi. Mycopathologia, 2013, 175, 523-535.	3.1	49
83	Localization of bacteria in lichens from Alpine soil crusts by fluorescence in situ hybridization. Applied Soil Ecology, 2013, 68, 20-25.	4.3	31
84	Genetic diversity and species delimitation of the zeorin-containing red-fruitedCladoniaspecies (lichenized Ascomycota) assessed with ITS rDNA and β-tubulin data. Lichenologist, 2013, 45, 665-684.	0.8	28
85	Antarctic Epilithic Lichens as Niches for Black Meristematic Fungi. Biology, 2013, 2, 784-797.	2.8	61
86	Niches and Adaptations of Polyextremotolerant Black Fungi. Cellular Origin and Life in Extreme Habitats, 2013, , 551-566.	0.3	10
87	Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Frontiers in Microbiology, 2012, 3, 390.	3.5	94
88	Bacterial taxa associated with the lung lichen Lobaria pulmonaria are differentially shaped by geography and habitat. FEMS Microbiology Letters, 2012, 329, 111-115.	1.8	56
89	Age, sun and substrate: triggers of bacterial communities in lichens. Environmental Microbiology Reports, 2012, 4, 23-28.	2.4	74
90	Alphaproteobacterial communities in geographically distant populations of the lichen <i>Cetraria aculeata</i> . FEMS Microbiology Ecology, 2012, 82, 316-325.	2.7	50

#	Article	IF	CITATIONS
91	Host-parasite interaction and microbiome response: effects of fungal infections on the bacterial community of the Alpine lichen <i>Solorina crocea</i> . FEMS Microbiology Ecology, 2012, 82, 472-481.	2.7	48
92	Exploring symbiont management in lichens. Molecular Ecology, 2012, 21, 3098-3099.	3.9	17
93	Microbial Diversity Inside Pumpkins: Microhabitat-Specific Communities Display a High Antagonistic Potential Against Phytopathogens. Microbial Ecology, 2012, 63, 418-428.	2.8	128
94	Frondihabitans cladoniiphilus sp. nov., an actinobacterium of the family Microbacteriaceae isolated from lichen, and emended description of the genus Frondihabitans. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 3033-3038.	1.7	37
95	Black fungi and associated bacterial communities in the phyllosphere of grapevine. Fungal Biology, 2011, 115, 978-986.	2.5	67
96	The emerging potential of melanized fungi: black yeast between beauty and the beast. Fungal Biology, 2011, 115, 935-936.	2.5	4
97	Microbial metacommunities in the lichen–rock habitat. Environmental Microbiology Reports, 2011, 3, 434-442.	2.4	88
98	Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology, 2011, 46, 399-415.	2.0	148
99	Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. FEMS Microbiology Ecology, 2011, 75, 255-272.	2.7	52
100	Emerging multi-pathogen disease caused by Didymella bryoniae and pathogenic bacteria on Styrian oil pumpkin. European Journal of Plant Pathology, 2011, 131, 539-548.	1.7	22
101	Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochemistry Reviews, 2011, 10, 287-307.	6.5	107
102	Structure and function of the symbiosis partners of the lung lichen (<i>Lobaria pulmonaria</i> L.) Tj ETQq0 0 0 rg	gBT_/Overlo	ock 10 Tf 50 3 165
103	Joint Dispersal Does Not Imply Maintenance of Partnerships in Lichen Symbioses. Microbial Ecology, 2010, 59, 150-157.	2.8	89
104	Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biology, 2010, 33, 71-83.	1.2	89
105	Morphological and phylogenetic study of algal partners associated with the lichen-forming fungus Tephromela atra from the Mediterranean region. Symbiosis, 2010, 51, 149-160.	2.3	49
106	Extremotolerance in fungi: evolution on the edge. FEMS Microbiology Ecology, 2010, 71, 2-11.	2.7	198
107	Fungal composition of lichen thalli assessed by single strand conformation polymorphism. Lichenologist, 2010, 42, 461-473.	0.8	15
108	Phylogenetic placement of some morphologically unusual members of Verrucariales. Mycologia, 2010, 102, 835-846.	1.9	28

#	Article	IF	CITATIONS
109	Arthonia borbonica (Ascomycota, Arthoniales), a new species from La Réunion. Plant Ecology and Evolution, 2010, 143, 222-224.	0.7	6

A contribution to the taxonomy of the genus <i>Rinodina</i> (<i>Physciaceae</i>, lichenized) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702

111	Foliicolous Lichens Lücking Robert . The New York Botanical Garden Press. New York. 2008. Foliicolous lichenized fungi. Flora Neotropica Monograph 103. 866. ISBN: ISBN 978-0-89327-491-7. \$ Price Price: US\$125.00. Available from: http://www.nybgpress.org/ Bryologist, 2010, 113, 224-226.	0.6	2
112	Type III polyketide synthases in lichen mycobionts. Fungal Biology, 2010, 114, 379-385.	2.5	27
113	Architectures of Biocomplexity: Lichen-Dominated Soil Crusts and Mats. Cellular Origin and Life in Extreme Habitats, 2010, , 341-357.	0.3	1
114	Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon, 2009, 58, 184-208.	0.7	88
115	ON LOCALIZATIONS IN MINIMAL CELLULAR AUTOMATA MODEL OF TWO-SPECIES MUTUALISM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 2885-2897.	1.7	2
116	A transcribed polyketide synthase gene from Xanthoria elegans. Mycological Research, 2009, 113, 82-92.	2.5	27
117	Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biology Reviews, 2009, 23, 72-85.	4.7	179
118	Pronounced genetic diversity in tropical epiphyllous lichen fungi. Molecular Ecology, 2009, 18, 2185-2197.	3.9	28
119	Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME Journal, 2009, 3, 1105-1115.	9.8	303
119 120		9.8 2.7	303 47
	Journal, 2009, 3, 1105-1115. Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Molecular Phylogenetics and Evolution, 2009, 52,		
120	Journal, 2009, 3, 1105-1115. Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Molecular Phylogenetics and Evolution, 2009, 52, 34-44. Molecular data confirm the position of Flakea papillata in the Verrucariaceae. Bryologist, 2009, 112,	2.7	47
120 121	Journal, 2009, 3, 1105-1115. Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Molecular Phylogenetics and Evolution, 2009, 52, 34-44. Molecular data confirm the position of Flakea papillata in the Verrucariaceae. Bryologist, 2009, 112, 538-543. Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group	2.7 0.6	47 8
120 121 122	Journal, 2009, 3, 1105-1115. Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Molecular Phylogenetics and Evolution, 2009, 52, 34-44. Molecular data confirm the position of Flakea papillata in the Verrucariaceae. Bryologist, 2009, 112, 538-543. Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycological Progress, 2008, 7, 147-160. In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula	2.7 0.6 1.4	47 8 64
120 121 122 123	Journal, 2009, 3, 1105-1115. Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Molecular Phylogenetics and Evolution, 2009, 52, 34-44. Molecular data confirm the position of Flakea papillata in the Verrucariaceae. Bryologist, 2009, 112, 538-543. Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycological Progress, 2008, 7, 147-160. In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiology Ecology, 2008, 66, 63-71. A combined molecular and morphological approach to species delimitation in black-fruited, endolithic	2.7 0.6 1.4 2.7	47 8 64 203

#	Article	IF	CITATIONS
127	Bartheletia paradoxa is a living fossil on Ginkgo leaf litter with a unique septal structure in the Basidiomycota. Mycological Research, 2008, 112, 1265-1279.	2.5	21
128	Fungal Associations at the Cold Edge of Life. Cellular Origin and Life in Extreme Habitats, 2007, , 735-757.	0.3	21
129	The new species <i>Lecanora bicinctoidea</i> , its position and considerations about phenotypic evolution in the <i>Lecanora rupicola</i> group. Mycologia, 2007, 99, 50-58.	1.9	10
130	The sister group relation of Parmeliaceae (Lecanorales, Ascomycota). Mycologia, 2007, 99, 42-49.	1.9	29
131	Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiology Ecology, 2007, 59, 386-395.	2.7	129
132	Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycological Research, 2007, 111, 1116-1132.	2.5	83
133	Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiology and Biochemistry, 2007, 45, 146-151.	5.8	67
134	New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 2006, 98, 1088-1103.	1.9	140
135	High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biological Journal of the Linnean Society, 2006, 88, 283-293.	1.6	136
136	Molecular analysis of lichen-associated bacterial communities. FEMS Microbiology Ecology, 2006, 57, 484-495.	2.7	141
137	Siphula represents a remarkable case of morphological convergence in sterile lichens. Lichenologist, 2006, 38, 241-249.	0.8	26
138	Evolution and phylogenetic relationships within Porinaceae (Ostropomycetidae), focusing on foliicolous species. Mycological Research, 2006, 110, 125-136.	2.5	16
139	Phylogeny and phenotypic variation in the lichen family Graphidaceae (Ostropomycetidae,) Tj ETQq1 1 0.784314	rgBT /Ove 2.5	rlock 10 Ti 72
140	Detection of paralogous polyketide synthase genes in Parmeliaceae by specific primers. Lichenologist, 2006, 38, 47-54.	0.8	22
141	New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 2006, 98, 1088-1103.	1.9	227
142	New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 2006, 98, 1088-103.	1.9	52
143	Lichens—a promising source of bioactive secondary metabolites. Plant Genetic Resources: Characterisation and Utilisation, 2005, 3, 273-287.	0.8	270
144	Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiology Ecology, 2005, 54, 381-390.	2.7	39

#	Article	IF	CITATIONS
145	Fatty acid composition of the tropical lichenTeloschistes flavicansand its cultivated symbionts. FEMS Microbiology Letters, 2005, 247, 1-6.	1.8	15
146	Nucleic Acid Isolation from Ecological Samples—Fungal Associations, Lichens. Methods in Enzymology, 2005, 395, 48-57.	1.0	5
147	Secondary Chemistry of Lichen-forming Fungi: Chemosyndromic Variation and DNA-analyses of Cultures and Chemotypes in the Ramalina farinacea Complex. Bryologist, 2004, 107, 152-162.	0.6	43
148	The phylogeny of Porinaceae (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. Mycological Research, 2004, 108, 1111-1118.	2.5	55
149	A phylogenetic study of the Lecanora rupicola group (Lecanoraceae, Ascomycota). Mycological Research, 2004, 108, 506-514.	2.5	46
150	Photobiont genetic variation in Flavocetraria nivalis from Poland (Parmeliaceae, lichenized) Tj ETQq0 0 0 rgBT /O	verlock 10 0.8) Tf 50 542 To
151	Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany, 2004, 91, 1446-1480.	1.7	718
152	A new isidiate species of <i>Arthonia</i> (Ascomycota: Arthoniaceae) from Costa Rica. Mycologia, 2004, 96, 1159-1162.	1.9	9
153	Caloplaca erodens [sect. Pyrenodesmia], a new lichen species from Italy with an unusual thallus type. Mycological Progress, 2003, 2, 127-136.	1.4	20
154	On the phylogeny of some polyketide synthase genes in the lichenized genus Lecanora. Mycological Research, 2003, 107, 1419-1426.	2.5	46
155	Progress in understanding the evolution and classification of lichenized ascomycetes. The Mycologist, 2002, 16, .	0.4	17
156	Parsimony Analyses of mtSSU and nITS rDNA Sequences Reveal the Natural Relationships of the Lichen Families Physciaceae and Caliciaceae. Taxon, 2002, 51, 655.	0.7	35
157	(1555) Proposal to conserve Physciaceae nom. cons. against an additional name Caliciaceae (Lecanorales, Ascomycota). Taxon, 2002, 51, 802-802.	0.7	8
158	Ribosomal DNA and β-tubulin data do not support the separation of the lichens Usnea florida and U. subfloridana as distinct species. Mycological Research, 2002, 106, 412-418.	2.5	73
159	An ultrastructural, anatomical and molecular study of the lichenicolous lichen Rimularia insularis. Mycological Research, 2002, 106, 946-953.	2.5	10
160	Molecular and Morphological evolution in the Physciaceae (Lecanorales, Lichenized Ascomycotina), with Special Emphasis on the Genus Rinodina. Lichenologist, 2001, 33, 63-72.	0.8	51
161	A simple method to prepare foliicolous lichens for anatomical and molecular studies. Lichenologist, 2001, 33, 547-550.	0.8	7
162	Coniarthonia, a new genus of arthonioid lichens. Lichenologist, 2001, 33, 491-502.	0.8	21

#	Article	IF	CITATIONS
163	Sporostigma, a New Calicioid Genus in Arthoniales. Lichenologist, 2001, 33, 387-391.	0.8	6
164	Ascogenous hyphae in foliicolous species of Arthonia and allied genera. Mycological Research, 2001, 105, 1007-1013.	2.5	11
165	Observations on Biatoropsis usnearum, a lichenicolous heterobasidiomycete, and other gall-forming lichenicolous fungi, using different microscopical techniques. Mycological Research, 2001, 105, 1116-1122.	2.5	29
166	Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycological Research, 2000, 104, 1284-1294.	2.5	113
167	Mycobiont-Specific PCR Primers for the Amplification of Nuclear its and LSU rDNA from Lichenized Ascomycetes. Lichenologist, 2000, 32, 200-204.	0.8	61
168	Host-parasite interfaces of some lichenicolous fungi in the Dacampiaceae (Dothideales, Ascomycota). Mycological Research, 2000, 104, 1348-1353.	2.5	25
169	Direct PCR of Symbiotic Fungi Using Microslides. BioTechniques, 1999, 26, 454-455.	1.8	22
170	Syncesia (Arthoniales, Euascomycetidae). Bryologist, 1999, 102, 573.	0.6	3
171	Where does Lecanora Demissa (Ascomycota, Lecanorales) Belong?. Lichenologist, 1999, 31, 419.	0.8	38
172	Molecular Systematics of Lecanora Subgenus Placodium. Lichenologist, 1998, 30, 415-425.	0.8	61
173	A small insertion in the SSU rDNA of the lichen fungusArthonia lapidicola is a degenerate group-I intron. Current Genetics, 1996, 29, 582-586.	1.7	31
174	Studies on Some Species of Arthothelium Occurring in the Western Mediterranean. Lichenologist, 1996, 28, 15-36.	0.8	19
175	Lichenized Fungi and the Evolution of Symbiotic Organization. , 0, , 749-765.		1