Ya-Qin Chai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9284871/publications.pdf

Version: 2024-02-01

378 papers 16,891 citations

67 h-index 96 g-index

379 all docs

379 docs citations

379 times ranked

10253 citing authors

#	Article	IF	CITATIONS
1	Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Mikrochimica Acta, 2013, 180, 15-32.	5.0	453
2	In Situ Hybridization Chain Reaction Amplification for Universal and Highly Sensitive Electrochemiluminescent Detection of DNA. Analytical Chemistry, 2012, 84, 7750-7755.	6.5	272
3	Highly Ordered and Field-Free 3D DNA Nanostructure: The Next Generation of DNA Nanomachine for Rapid Single-Step Sensing. Journal of the American Chemical Society, 2018, 140, 9361-9364.	13.7	192
4	An "Off–On―Electrochemiluminescent Biosensor Based on DNAzyme-Assisted Target Recycling and Rolling Circle Amplifications for Ultrasensitive Detection of microRNA. Analytical Chemistry, 2015, 87, 3202-3207.	6.5	182
5	<i>In Situ</i> Electrochemical Generation of Electrochemiluminescent Silver Naonoclusters on Target-Cycling Synchronized Rolling Circle Amplification Platform for MicroRNA Detection. Analytical Chemistry, 2016, 88, 3203-3210.	6.5	174
6	A multifunctional hemin@metal–organic framework and its application to construct an electrochemical aptasensor for thrombin detection. Nanoscale, 2015, 7, 18232-18238.	5.6	165
7	Cu-Based Metal–Organic Frameworks as a Catalyst To Construct a Ratiometric Electrochemical Aptasensor for Sensitive Lipopolysaccharide Detection. Analytical Chemistry, 2015, 87, 11345-11352.	6.5	163
8	Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection. Analytical Chemistry, 2015, 87, 6328-6334.	6.5	152
9	Strong Electrochemiluminescence from MOF Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace cTnl. Analytical Chemistry, 2018, 90, 3995-4002.	6.5	150
10	Near-infrared aggregation-induced enhanced electrochemiluminescence from tetraphenylethylene nanocrystals: a new generation of ECL emitters. Chemical Science, 2019, 10, 4497-4501.	7.4	148
11	Electrochemiluminescence Resonance Energy Transfer System: Mechanism and Application in Ratiometric Aptasensor for Lead Ion. Analytical Chemistry, 2015, 87, 7787-7794.	6.5	147
12	Ceria Doped Zinc Oxide Nanoflowers Enhanced Luminol-Based Electrochemiluminescence Immunosensor for Amyloid-Î ² Detection. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12968-12975.	8.0	143
13	In Situ DNA-Templated Synthesis of Silver Nanoclusters for Ultrasensitive and Label-Free Electrochemical Detection of MicroRNA. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1188-1193.	8.0	142
14	New Signal Amplification Strategy Using Semicarbazide as Co-reaction Accelerator for Highly Sensitive Electrochemiluminescent Aptasensor Construction. Analytical Chemistry, 2015, 87, 11389-11397.	6.5	135
15	Multiplexed and Amplified Electronic Sensor for the Detection of MicroRNAs from Cancer Cells. Analytical Chemistry, 2014, 86, 11913-11918.	6.5	123
16	"Off―to "On―Surface-Enhanced Raman Spectroscopy Platform with Padlock Probe-Based Exponential Rolling Circle Amplification for Ultrasensitive Detection of MicroRNA 155. Analytical Chemistry, 2017, 89, 2866-2872.	6.5	123
17	Ultrasensitive Apurinic/Apyrimidinic Endonuclease 1 Immunosensing Based on Self-Enhanced Electrochemiluminescence of a Ru(II) Complex. Analytical Chemistry, 2014, 86, 1053-1060.	6.5	121
18	Electrochemiluminescent Graphene Quantum Dots as a Sensing Platform: A Dual Amplification for MicroRNA Assay. Analytical Chemistry, 2015, 87, 10385-10391.	6.5	121

#	Article	IF	Citations
19	Ultrasensitive simultaneous detection of four biomarkers based on hybridization chain reaction and biotin–streptavidin signal amplification strategy. Biosensors and Bioelectronics, 2015, 68, 42-48.	10.1	119
20	Ultrasensitive Electrochemiluminescence Biosensor for MicroRNA Detection by 3D DNA Walking Machine Based Target Conversion and Distance-Controllable Signal Quenching and Enhancing. Analytical Chemistry, 2017, 89, 8282-8287.	6. 5	119
21	DNA-Fueled Molecular Machine Enables Enzyme-Free Target Recycling Amplification for Electronic Detection of MicroRNA from Cancer Cells with Highly Minimized Background Noise. Analytical Chemistry, 2015, 87, 8578-8583.	6.5	117
22	Bi-directional DNA Walking Machine and Its Application in an Enzyme-Free Electrochemiluminescence Biosensor for Sensitive Detection of MicroRNAs. Analytical Chemistry, 2017, 89, 5036-5042.	6.5	117
23	Porous carbon-coated CuCo ₂ O ₄ concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 12038-12043.	10.3	115
24	Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection. Analytical Chemistry, 2017, 89, 4280-4286.	6.5	110
25	Metal Organic Frameworks Combining CoFe ₂ O ₄ Magnetic Nanoparticles as Highly Efficient SERS Sensing Platform for Ultrasensitive Detection of N-Terminal Pro-Brain Natriuretic Peptide. ACS Applied Materials & Detection of N-Terminal Pro-Brain Natriuretic Peptide.	8.0	109
26	Switchable Target-Responsive 3D DNA Hydrogels As a Signal Amplification Strategy Combining with SERS Technique for Ultrasensitive Detection of miRNA 155. Analytical Chemistry, 2017, 89, 8538-8544.	6.5	107
27	Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods. Biosensors and Bioelectronics, 2015, 63, 33-38.	10.1	106
28	Functional Three-Dimensional Porous Conductive Polymer Hydrogels for Sensitive Electrochemiluminescence in Situ Detection of H ₂ O ₂ Released from Live Cells. Analytical Chemistry, 2018, 90, 8462-8469.	6.5	106
29	Ultrasensitive Photoelectrochemical Biosensor Based on DNA Tetrahedron as Nanocarrier for Efficient Immobilization of CdTe QDs-Methylene Blue as Signal Probe with Near-Zero Background Noise. Analytical Chemistry, 2018, 90, 8211-8216.	6.5	104
30	Ultrasensitive Lipopolysaccharides Detection Based on Doxorubicin Conjugated $\langle i \rangle N \langle i \rangle$ -(Aminobutyl)- $\langle i \rangle N \langle i \rangle$ -(ethylisoluminol) as Electrochemiluminescence Indicator and Self-Assembled Tetrahedron DNA Dendrimers as Nanocarriers. Analytical Chemistry, 2016, 88, 5218-5224.	6.5	99
31	Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for MicroRNA Detection with One-Step DNA Walker Amplification. Analytical Chemistry, 2018, 90, 5298-5305.	6.5	98
32	Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosensors and Bioelectronics, 2014, 55, 360-365.	10.1	97
33	Highly Efficient Electrochemiluminescent Silver Nanoclusters/Titanium Oxide Nanomaterials as a Signal Probe for Ferrocene-Driven Light Switch Bioanalysis. Analytical Chemistry, 2017, 89, 3732-3738.	6.5	97
34	Electrochemical Peptide Biosensor Based on in Situ Silver Deposition for Detection of Prostate Specific Antigen. ACS Applied Materials & Specific Antigen. A	8.0	96
35	Self-Enhanced Electrochemiluminescence Nanorods of Tris(bipyridine) Ruthenium(II) Derivative and Its Sensing Application for Detection of <i>N</i> -Acetyl-β- <scp>d</scp> -glucosaminidase. Analytical Chemistry, 2016, 88, 2258-2265.	6.5	95
36	Ultrasensitive Assay for Telomerase Activity via Self-Enhanced Electrochemiluminescent Ruthenium Complex Doped Metal–Organic Frameworks with High Emission Efficiency. Analytical Chemistry, 2017, 89, 3222-3227.	6.5	95

#	Article	IF	Citations
37	Development of an electrochemical method for Ochratoxin A detection based on aptamer and loop-mediated isothermal amplification. Biosensors and Bioelectronics, 2014, 55, 324-329.	10.1	94
38	Cu Nanoclusters: Novel Electrochemiluminescence Emitters for Bioanalysis. Analytical Chemistry, 2016, 88, 11527-11532.	6.5	94
39	MoS ₂ Quantum Dots as New Electrochemiluminescence Emitters for Ultrasensitive Bioanalysis of Lipopolysaccharide. Analytical Chemistry, 2017, 89, 8335-8342.	6.5	94
40	Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay. Analytical Chemistry, 2016, 88, 9243-9250.	6.5	93
41	SnS ₂ Quantum Dots as New Emitters with Strong Electrochemiluminescence for Ultrasensitive Antibody Detection. Analytical Chemistry, 2018, 90, 12270-12277.	6.5	93
42	A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chemical Communications, 2016, 52, 3673-3676.	4.1	92
43	A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale, 2014, 6, 2902.	5.6	91
44	Silver Ions as Novel Coreaction Accelerator for Remarkably Enhanced Electrochemiluminescence in a PTCA–S ₂ O ₈ <aeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee< td=""><td>6.5</td><td>91</td></aeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee<>	6.5	91
45	Versatile and Ultrasensitive Electrochemiluminescence Biosensor for Biomarker Detection Based on Nonenzymatic Amplification and Aptamer-Triggered Emitter Release. Analytical Chemistry, 2019, 91, 3452-3458.	6.5	91
46	Electrochemiluminescence of luminol enhanced by the synergetic catalysis of hemin and silver nanoparticles for sensitive protein detection. Biosensors and Bioelectronics, 2014, 54, 20-26.	10.1	90
47	Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers. Biosensors and Bioelectronics, 2015, 66, 356-362.	10.1	90
48	Ternary Electrochemiluminescence System Based on Rubrene Microrods as Luminophore and Pt Nanomaterials as Coreaction Accelerator for Ultrasensitive Detection of MicroRNA from Cancer Cells. Analytical Chemistry, 2017, 89, 9108-9115.	6.5	90
49	Anodic Electrochemiluminescence of Carbon Dots Promoted by Nitrogen Doping and Application to Rapid Cancer Cell Detection. Analytical Chemistry, 2020, 92, 1379-1385.	6.5	88
50	One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155. Biosensors and Bioelectronics, 2020, 149, 111848.	10.1	86
51	Electrochemiluminescence Peptide-Based Biosensor with Hetero-Nanostructures as Coreaction Accelerator for the Ultrasensitive Determination of Tryptase. Analytical Chemistry, 2018, 90, 2263-2270.	6.5	85
52	Novel 2D-DNA-Nanoprobe-Mediated Enzyme-Free-Target-Recycling Amplification for the Ultrasensitive Electrochemical Detection of MicroRNA. Analytical Chemistry, 2018, 90, 9538-9544.	6.5	83
53	Highly Efficient Electrochemiluminescence Resonance Energy Transfer System in One Nanostructure: Its Application for Ultrasensitive Detection of MicroRNA in Cancer Cells. Analytical Chemistry, 2017, 89, 6029-6035.	6.5	81
54	Cu/Mn Double-Doped CeO ₂ Nanocomposites as Signal Tags and Signal Amplifiers for Sensitive Electrochemical Detection of Procalcitonin. Analytical Chemistry, 2017, 89, 13349-13356.	6.5	81

#	Article	IF	Citations
55	Ternary Electrochemiluminescence Nanostructure of Au Nanoclusters as a Highly Efficient Signal Label for Ultrasensitive Detection of Cancer Biomarkers. Analytical Chemistry, 2018, 90, 10024-10030.	6.5	81
56	Universal Ratiometric Photoelectrochemical Bioassay with Target-Nucleotide Transduction-Amplification and Electron-Transfer Tunneling Distance Regulation Strategies for Ultrasensitive Determination of microRNA in Cells. Analytical Chemistry, 2017, 89, 9445-9451.	6.5	79
57	An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosensors and Bioelectronics, 2015, 69, 321-327.	10.1	78
58	DNA nanomachine-based regenerated sensing platform: a novel electrochemiluminescence resonance energy transfer strategy for ultra-high sensitive detection of microRNA from cancer cells. Nanoscale, 2017, 9, 2310-2316.	5.6	77
59	In Situ Formation of Multifunctional DNA Nanospheres for a Sensitive and Accurate Dual-Mode Biosensor for Photoelectrochemical and Electrochemical Assay. Analytical Chemistry, 2020, 92, 8364-8370.	6.5	77
60	In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions. Chemical Communications, 2016, 52, 5589-5592.	4.1	76
61	Using p-type PbS Quantum Dots to Quench Photocurrent of Fullerene–Au NP@MoS ₂ Composite Structure for Ultrasensitive Photoelectrochemical Detection of ATP. ACS Applied Materials & Interfaces, 2017, 9, 42111-42120.	8.0	75
62	Electrochemiluminescence Enhanced by Restriction of Intramolecular Motions (RIM): Tetraphenylethylene Microcrystals as a Novel Emitter for Mucin 1 Detection. Analytical Chemistry, 2019, 91, 3710-3716.	6.5	75
63	In Situ Electrodeposited Synthesis of Electrochemiluminescent Ag Nanoclusters as Signal Probe for Ultrasensitive Detection of Cyclin-D1 from Cancer Cells. Analytical Chemistry, 2017, 89, 6787-6793.	6.5	74
64	A highly sensitive VEGF165 photoelectrochemical biosensor fabricated by assembly of aptamer bridged DNA networks. Biosensors and Bioelectronics, 2018, 101, 213-218.	10.1	74
65	A Sensitive Electrochemical Aptasensor for Thrombin Detection Based on Electroactive Co-Based Metal–Organic Frameworks with Target-Triggering NESA Strategy. Analytical Chemistry, 2017, 89, 11636-11640.	6.5	72
66	Dynamical Regulation of Enzyme Cascade Amplification by a Regenerated DNA Nanotweezer for Ultrasensitive Electrochemical DNA Detection. Analytical Chemistry, 2018, 90, 10701-10706.	6.5	72
67	Coupling hybridization chain reaction with catalytic hairpin assembly enables non-enzymatic and sensitive fluorescent detection of microRNA cancer biomarkers. Biosensors and Bioelectronics, 2016, 77, 416-420.	10.1	70
68	Dual microRNAs-Fueled DNA Nanogears: A Case of Regenerated Strategy for Multiple Electrochemiluminescence Detection of microRNAs with Single Luminophore. Analytical Chemistry, 2017, 89, 1338-1345.	6.5	70
69	Luminescenceâ€Functionalized Metal–Organic Frameworks Based on a Ruthenium(II) Complex: A Signal Amplification Strategy for Electrogenerated Chemiluminescence Immunosensors. Chemistry - A European Journal, 2015, 21, 9825-9832.	3.3	69
70	Hollow Porous Polymeric Nanospheres of a Self-Enhanced Ruthenium Complex with Improved Electrochemiluminescent Efficiency for Ultrasensitive Aptasensor Construction. Analytical Chemistry, 2017, 89, 9232-9238.	6.5	69
71	Novel Ru(bpy) ₂ (cpaphen) ²⁺ /TPrA/TiO ₂ Ternary ECL System: An Efficient Platform for the Detection of Glutathione with Mn ²⁺ as Substitute Target. Analytical Chemistry, 2019, 91, 3681-3686.	6.5	69
72	An ultrasensitive electrochemiluminescence biosensor for detection of MicroRNA by in-situ electrochemically generated copper nanoclusters as luminophore and TiO2 as coreaction accelerator. Biosensors and Bioelectronics, 2018, 114, 10-14.	10.1	68

#	Article	IF	CITATIONS
73	A Janus 3D DNA nanomachine for simultaneous and sensitive fluorescence detection and imaging of dual microRNAs in cancer cells. Chemical Science, 2020, 11, 8482-8488.	7.4	68
74	Ce-based metal-organic frameworks and DNAzyme-assisted recycling as dual signal amplifiers for sensitive electrochemical detection of lipopolysaccharide. Biosensors and Bioelectronics, 2016, 83, 287-292.	10.1	67
75	An ultrasensitive electrochemiluminescence biosensor for MicroRNA detection based on luminol-functionalized Au NPs@ZnO nanomaterials as signal probe and dissolved O2 as coreactant. Biosensors and Bioelectronics, 2019, 135, 8-13.	10.1	66
76	In Situ Controllable Generation of Copper Nanoclusters Confined in a Poly- <scp>l</scp> -Cysteine Porous Film with Enhanced Electrochemiluminescence for Alkaline Phosphatase Detection. Analytical Chemistry, 2020, 92, 13581-13587.	6.5	66
77	Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel "on-off-on―switch system. Biomaterials, 2015, 52, 476-483.	11.4	65
78	Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd–Au nanowires as immobilization platform. Biosensors and Bioelectronics, 2016, 79, 34-40.	10.1	65
79	PtNPs as Scaffolds to Regulate Interenzyme Distance for Construction of Efficient Enzyme Cascade Amplification for Ultrasensitive Electrochemical Detection of MMP-2. Analytical Chemistry, 2017, 89, 9383-9387.	6.5	65
80	Programmable Modulation of Copper Nanoclusters Electrochemiluminescence via DNA Nanocranes for Ultrasensitive Detection of microRNA. Analytical Chemistry, 2018, 90, 3543-3549.	6.5	65
81	Amperometric Hydrogen Peroxide Biosensor Based on the Immobilization of Horseradish Peroxidase (HRP) on the Layer-by-Layer Assembly Films of Gold Colloidal Nanoparticles and Toluidine Blue. Electroanalysis, 2006, 18, 471-477.	2.9	63
82	A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on a Polypyrrole Nanowire-Copper Nanocomposite Modified Gold Electrode. Sensors, 2008, 8, 5141-5152.	3.8	63
83	Perylene Derivative/Luminol Nanocomposite as a Strong Electrochemiluminescence Emitter for Construction of an Ultrasensitive MicroRNA Biosensor. Analytical Chemistry, 2019, 91, 1516-1523.	6.5	63
84	Ultrasensitive Cytosensor Based on Self-Enhanced Electrochemiluminescent Ruthenium-Silica Composite Nanoparticles for Efficient Drug Screening with Cell Apoptosis Monitoring. Analytical Chemistry, 2015, 87, 12363-12371.	6.5	62
85	A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene–molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification. Analytica Chimica Acta, 2015, 853, 234-241.	5.4	62
86	Self-Enhanced Ultrasensitive Photoelectrochemical Biosensor Based on Nanocapsule Packaging Both Donor–Acceptor-Type Photoactive Material and Its Sensitizer. Analytical Chemistry, 2016, 88, 8698-8705.	6.5	61
87	An ultrasensitive "on–off–on―photoelectrochemical aptasensor based on signal amplification of a fullerene/CdTe quantum dots sensitized structure and efficient quenching by manganese porphyrin. Chemical Communications, 2016, 52, 8138-8141.	4.1	61
88	A highly sensitive electrochemiluminescence biosensor for the detection of organophosphate pesticides based on cyclodextrin functionalized graphitic carbon nitride and enzyme inhibition. Chemical Communications, 2016, 52, 5049-5052.	4.1	61
89	Enzyme-free Target Recycling and Double-Output Amplification System for Electrochemiluminescent Assay of Mucin 1 with MoS ₂ Nanoflowers as Co-reaction Accelerator. ACS Applied Materials & Ditempted & Ditempted Materials & Ditempted Materials & Ditempted	8.0	61
90	An enzyme-free electrochemical biosensor combining target recycling with Fe3O4/CeO2@Au nanocatalysts for microRNA-21 detection. Biosensors and Bioelectronics, 2018, 119, 170-175.	10.1	61

#	Article	IF	CITATIONS
91	Tracing Phosphate Ions Generated during Loop-Mediated Isothermal Amplification for Electrochemical Detection of <i>Nosema bombycis </i> Cenomic DNA PTP1. Analytical Chemistry, 2015, 87, 10268-10274.	6.5	60
92	Hemin as electrochemically regenerable co-reaction accelerator for construction of an ultrasensitive PTCA-based electrochemiluminescent aptasensor. Biosensors and Bioelectronics, 2018, 100, 490-496.	10.1	60
93	Ultrasensitive Electrochemiluminescence Biosensor for Speedy Detection of microRNA Based on a DNA Rolling Machine and Target Recycling. Analytical Chemistry, 2019, 91, 4883-4888.	6.5	60
94	Highly Sensitive Photoelectrochemical Biosensor Based on Quantum Dots Sensitizing Bi ₂ Te ₃ Nanosheets and DNA-Amplifying Strategies. ACS Applied Materials & Interfaces, 2020, 12, 22624-22629.	8.0	60
95	Dual amplified and ultrasensitive electrochemical detection of mutant DNA Biomarkers based on nuclease-assisted target recycling and rolling circle amplifications. Biosensors and Bioelectronics, 2014, 55, 266-271.	10.1	59
96	Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin. Biosensors and Bioelectronics, 2015, 64, 306-310.	10.1	59
97	High-Efficiency CNNS@NH ₂ -MIL(Fe) Electrochemiluminescence Emitters Coupled with Ti ₃ C ₂ Nanosheets as a Matrix for a Highly Sensitive Cardiac Troponin I Assay. Analytical Chemistry, 2020, 92, 8992-9000.	6.5	59
98	Simultaneous determination of dopamine, ascorbic acid and uric acid using a multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by PAMAM and Au nanoparticles. Analytical Methods, 2015, 7, 1471-1477.	2.7	58
99	Ultrasensitive Electrochemiluminescence Biosensing Platform for Detection of Multiple Types of Biomarkers toward Identical Cancer on a Single Interface. Analytical Chemistry, 2017, 89, 12821-12827.	6.5	56
100	Ti ₃ C ₂ /BiVO ₄ Schottky junction as a signal indicator for ultrasensitive photoelectrochemical detection of VEGF ₁₆₅ . Chemical Communications, 2019, 55, 13729-13732.	4.1	56
101	A photoelectrochemical biosensor based on fullerene with methylene blue as a sensitizer for ultrasensitive DNA detection. Biosensors and Bioelectronics, 2019, 142, 111579.	10.1	55
102	Simply Constructed and Highly Efficient Classified Cargo-Discharge DNA Robot: A DNA Walking Nanomachine Platform for Ultrasensitive Multiplexed Sensing. Analytical Chemistry, 2019, 91, 8123-8128.	6.5	55
103	Covalent organic frameworks as micro-reactors: confinement-enhanced electrochemiluminescence. Chemical Science, 2020, 11, 5410-5414.	7.4	55
104	Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles. Mikrochimica Acta, 2012, 176, 389-395.	5.0	54
105	Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification. Analytica Chimica Acta, 2014, 811, 70-75.	5.4	54
106	A microRNA-activated molecular machine for non-enzymatic target recycling amplification detection of microRNA from cancer cells. Chemical Communications, 2015, 51, 11084-11087.	4.1	54
107	Target-catalyzed hairpin assembly and intramolecular/intermolecular co-reaction for signal amplified electrochemiluminescent detection of microRNA. Biosensors and Bioelectronics, 2016, 77, 442-450.	10.1	54
108	Precise Regulation of Enzyme Cascade Catalytic Efficiency with DNA Tetrahedron as Scaffold for Ultrasensitive Electrochemical Detection of DNA. Analytical Chemistry, 2019, 91, 3561-3566.	6.5	54

#	Article	IF	Citations
109	Self-Assembly of Gold Nanoclusters into a Metal–Organic Framework with Efficient Electrochemiluminescence and Their Application for Sensitive Detection of Rutin. Analytical Chemistry, 2021, 93, 3445-3451.	6.5	54
110	In situ formation of flower-like CuCo ₂ S ₄ nanosheets/graphene composites with enhanced lithium storage properties. RSC Advances, 2016, 6, 38321-38327.	3.6	53
111	A sensitive electrochemiluminescence immunosensor based on luminophore capped Pd@Au core-shell nanoparticles as signal tracers and ferrocenyl compounds as signal enhancers. Biosensors and Bioelectronics, 2016, 81, 334-340.	10.1	53
112	A Highly Sensitive Photoelectrochemical Assay with Donor–Acceptor-Type Material as Photoactive Material and Polyaniline as Signal Enhancer. Analytical Chemistry, 2018, 90, 6096-6101.	6.5	53
113	Three-Dimensional Cadmium Telluride Quantum Dots–DNA Nanoreticulation as a Highly Efficient Electrochemiluminescent Emitter for Ultrasensitive Detection of MicroRNA from Cancer Cells. Analytical Chemistry, 2019, 91, 7765-7773.	6.5	53
114	Sensitive Electrochemiluminescence Immunosensor for Detection of ⟨i>N-Acetyl-β-⟨scp>d-glucosaminidase Based on a "Light-Switch―Molecule Combined with DNA Dendrimer. Analytical Chemistry, 2016, 88, 5797-5803.	6.5	52
115	A sensitive electrochemiluminescent aptasensor based on perylene derivatives as a novel co-reaction accelerator for signal amplification. Biosensors and Bioelectronics, 2016, 85, 8-15.	10.1	52
116	An ultrasensitive electrochemiluminescence immunosensor for NT-proBNP based on self-catalyzed luminescence emitter coupled with PdCu@carbon nanohorn hybrid. Biosensors and Bioelectronics, 2017, 87, 779-785.	10.1	52
117	Gold nanoparticle–graphene nanohybrid bridged 3-amino-5-mercapto-1,2,4-triazole-functionalized multiwall carbon nanotubes for the simultaneous determination of hydroquinone, catechol, resorcinol and nitrite. Analytical Methods, 2013, 5, 666-672.	2.7	51
118	Quadratic recycling amplification for label-free and sensitive visual detection of HIV DNA. Biosensors and Bioelectronics, 2014, 55, 220-224.	10.1	51
119	Target-Induced 3D DNA Network Structure as a Novel Signal Amplifier for Ultrasensitive Electrochemiluminescence Detection of MicroRNAs. Analytical Chemistry, 2019, 91, 14368-14374.	6.5	51
120	An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications. Analytical Chemistry, 2020, 92, 11044-11052.	6.5	51
121	Wavelength-resolved simultaneous photoelectrochemical bifunctional sensor on single interface: A newly in vitro approach for multiplexed DNA monitoring in cancer cells. Biosensors and Bioelectronics, 2016, 81, 423-430.	10.1	50
122	Ultrasensitive Photoelectrochemical Assay for DNA Detection Based on a Novel SnS ₂ /Co ₃ O ₄ Sensitized Structure. Analytical Chemistry, 2020, 92, 14769-14774.	6.5	50
123	Electrochemiluminescence recovery-based aptasensor for sensitive Ochratoxin A detection via exonuclease-catalyzed target recycling amplification. Talanta, 2014, 125, 45-50.	5.5	49
124	Electrochemiluminescence of Supramolecular Nanorods and Their Application in the "On–Off–On― Detection of Copper Ions. Chemistry - A European Journal, 2016, 22, 8207-8214.	3.3	49
125	DNA Enzyme-Decorated DNA Nanoladders as Enhancer for Peptide Cleavage-Based Electrochemical Biosensor. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22869-22874.	8.0	49
126	Thrombin aptasensor enabled by Pt nanoparticles-functionalized Co-based metal organic frameworks assisted electrochemical signal amplification. Talanta, 2017, 169, 44-49.	5.5	49

#	Article	IF	CITATIONS
127	p–n-Sensitized Heterostructure Co ₃ O ₄ /Fullerene with Highly Efficient Photoelectrochemical Performance for Ultrasensitive DNA Detection. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23765-23772.	8.0	49
128	An electrochemical aptasensor for thrombin using synergetic catalysis of enzyme and porous Au@Pd coreâ€"shell nanostructures for signal amplification. Biosensors and Bioelectronics, 2015, 64, 423-428.	10.1	48
129	Highly Effective Protein Converting Strategy for Ultrasensitive Electrochemical Assay of Cystatin C. Analytical Chemistry, 2016, 88, 5189-5196.	6.5	48
130	Stimuli-Responsive DNA Microcapsules for SERS Sensing of Trace MicroRNA. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 12491-12496.	8.0	48
131	N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosensors and Bioelectronics, 2018, 121, 250-256.	10.1	48
132	Electrochemiluminescence biosensing based on different modes of switching signals. Analyst, The, 2018, 143, 3230-3248.	3.5	48
133	Simultaneous determination of hydroquinone, catechol, resorcinol and nitrite using gold nanoparticles loaded on poly-3-amino-5-mercapto-1,2,4-triazole-MWNTs film modified electrode. Analytical Methods, 2012, 4, 1626.	2.7	47
134	Electrochemical immunosensor for detecting the spore wall protein of Nosema bombycis based on the amplification of hemin/G-quadruplex DNAzyme concatamers functionalized Pt@Pd nanowires. Biosensors and Bioelectronics, 2014, 60, 118-123.	10.1	47
135	Highly effective molecule converting strategy based on enzyme-free dual recycling amplification for ultrasensitive electrochemical detection of ATP. Chemical Communications, 2017, 53, 8368-8371.	4.1	47
136	Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNAâe"PtNPs dendrimer as a synergetic signal amplification label. Biosensors and Bioelectronics, 2014, 60, 224-230.	10.1	46
137	An electrochemiluminescence immunosensor for thyroid stimulating hormone based on polyamidoamine-norfloxacin functionalized Pd–Au core–shell hexoctahedrons as signal enhancers. Biosensors and Bioelectronics, 2015, 71, 164-170.	10.1	46
138	Ultrasensitive Photoelectrochemical Detection of Multiple Metal Ions Based on Wavelength-Resolved Dual-Signal Output Triggered by Click Reaction. Analytical Chemistry, 2019, 91, 2861-2868.	6.5	46
139	Programming a Target-Initiated Bifunctional DNAzyme Nanodevice for Sensitive Ratiometric Flectrochemical Biosensing Analytical Chemistry, 2019, 91, 6127-6133, Ru <mml:math< td=""><td>6.5</td><td>46</td></mml:math<>	6.5	46
140	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0002.gif" overflow="scroll"> <mml:mrow><mml:msubsup <="" subscriptshift="90%" td=""><td></td><td></td></mml:msubsup></mml:mrow>		

9

#	Article	IF	CITATIONS
145	A new hybrid signal amplification strategy for ultrasensitive electrochemical detection of DNA based on enzyme-assisted target recycling and DNA supersandwich assemblies. Chemical Communications, 2013, 49, 2052.	4.1	43
146	Electrochemiluminescence immunosensor based on multifunctional luminol-capped AuNPs@Fe 3 O 4 nanocomposite for the detection of mucin-1. Biosensors and Bioelectronics, 2015, 71, 407-413.	10.1	43
147	Highly Efficient Intramolecular Electrochemiluminescence Energy Transfer for Ultrasensitive Bioanalysis of Aflatoxin M1. Chemistry - A European Journal, 2017, 23, 1853-1859.	3.3	43
148	Sensitive electrochemiluminescent immunosensor for diabetic nephropathy analysis based on tris(bipyridine) ruthenium(II) derivative with binary intramolecular self-catalyzed property. Biosensors and Bioelectronics, 2018, 100, 35-40.	10.1	43
149	Biomimetic 3D DNA Nanomachine via Free DNA Walker Movement on Lipid Bilayers Supported by Hard SiO ₂ @CdTe Nanoparticles for Ultrasensitive MicroRNA Detection. Analytical Chemistry, 2019, 91, 14920-14926.	6.5	43
150	Construction of a Z-scheme g-C ₃ N ₄ /Ag/AgI heterojunction for highly selective photoelectrochemical detection of hydrogen sulfide. Chemical Communications, 2019, 55, 11940-11943.	4.1	43
151	A restriction enzyme-powered autonomous DNA walking machine: its application for a highly sensitive electrochemiluminescence assay of DNA. Nanoscale, 2015, 7, 981-986.	5.6	42
152	A novel solid-state Ru(bpy)32+ electrochemiluminescence immunosensor based on poly(ethylenimine) and polyamidoamine dendrimers as co-reactants. Talanta, 2015, 131, 192-197.	5.5	42
153	Novel Single-Enzyme-Assisted Dual Recycle Amplification Strategy for Sensitive Photoelectrochemical MicroRNA Assay. Analytical Chemistry, 2020, 92, 14550-14557.	6.5	42
154	Versatile Luminol/Dissolved Oxygen/Fe@Fe ₂ O ₃ Nanowire Ternary Electrochemiluminescence System Combined with Highly Efficient Strand Displacement Amplification for Ultrasensitive microRNA Detection. Analytical Chemistry, 2021, 93, 13334-13341.	6.5	42
155	Nonenzymatic glucose sensor based on a glassy carbon electrode modified with chains of platinum hollow nanoparticles and porous gold nanoparticles in a chitosan membrane. Mikrochimica Acta, 2011, 172, 163-169.	5.0	41
156	Amplified Thrombin Aptasensor Based on Alkaline Phosphatase and Hemin/G-Quadruplex-Catalyzed Oxidation of 1-Naphthol. ACS Applied Materials & https://www.accept.com/applied/pieces/2015/10308-10315.	8.0	41
157	A label-free electrochemical aptasensor based on the catalysis of manganese porphyrins for detection of thrombin. Biosensors and Bioelectronics, 2015, 66, 585-589.	10.1	41
158	Highly Efficient Dual-Polar Electrochemiluminescence from Au ₂₅ Nanoclusters: The Next Generation of Multibiomarker Detection in a Single Step. Analytical Chemistry, 2019, 91, 14618-14623.	6.5	41
159	Ag/TiO2 nanocomposites as a novel SERS substrate for construction of sensitive biosensor. Sensors and Actuators B: Chemical, 2021, 339, 129843.	7.8	41
160	Sandwiched Electrochemiluminescent Peptide Biosensor for the Detection of Prognostic Indicator in Earlyâ€5tage Cancer Based on Hollow, Magnetic, and Selfâ€Enhanced Nanosheets. Small, 2015, 11, 3703-3709.	10.0	40
161	A robust, magnetic, and self-accelerated electrochemiluminescent nanosensor for ultrasensitive detection of copper ion. Biosensors and Bioelectronics, 2018, 109, 109-115.	10.1	40
162	An efficient target–intermediate recycling amplification strategy for ultrasensitive fluorescence assay of intracellular lead ions. Chemical Communications, 2017, 53, 7525-7528.	4.1	39

#	Article	IF	CITATIONS
163	Homogeneous Entropy Catalytic-Driven DNA Hydrogel as Strong Signal Blocker for Highly Sensitive Electrochemical Detection of Platelet-Derived Growth Factor. Analytical Chemistry, 2018, 90, 8241-8247.	6.5	39
164	Reversible and Distance-Controllable DNA Scissor: A Regenerated Electrochemiluminescence Biosensing Platform for Ultrasensitive Detection of MicroRNA. Analytical Chemistry, 2019, 91, 3239-3245.	6.5	39
165	Multiparameter Analysis-Based Electrochemiluminescent Assay for Simultaneous Detection of Multiple Biomarker Proteins on a Single Interface. Analytical Chemistry, 2016, 88, 4940-4948.	6.5	38
166	Electrochemical synthesis of silver nanoclusters on electrochemiluminescent resonance energy transfer amplification platform for Apo-A1 detection. Talanta, 2018, 181, 32-37.	5 . 5	38
167	A synergistic promotion strategy remarkably accelerated electrochemiluminescence of SnO2 QDs for MicroRNA detection using 3D DNA walker amplification. Biosensors and Bioelectronics, 2021, 173, 112820.	10.1	38
168	Electron-Transfer Mediator Microbiosensor Fabrication Based on Immobilizing HRP-Labeled Au Colloids on Gold Electrode Surface by 11 -Mercaptoundecanoic Acid Monolayer. Electroanalysis, 2006, 18, 259-266.	2.9	37
169	A Reagentless Amperometric Immunosensor for Alpha-Fetoprotein Based on Gold Nanoparticles/TiO2 Colloids/Prussian Blue Modified Platinum Electrode. Electroanalysis, 2007, 19, 1402-1410.	2.9	37
170	Two (3,10)-Connected 2D Networks Based on Pentanuclear Metal Clusters as Building Blocks. European Journal of Inorganic Chemistry, 2008, 2008, 2610-2615.	2.0	37
171	Dendritic Silver/Silicon Dioxide Nanocomposite Modified Electrodes for Electrochemical Sensing of Hydrogen Peroxide. Electroanalysis, 2008, 20, 1839-1844.	2.9	37
172	A cathodic electrogenerated chemiluminescence biosensor based on luminol and hemin-graphene nanosheets for cholesterol detection. RSC Advances, 2012, 2, 4639.	3.6	37
173	Self-enhanced N-(aminobutyl)-N-(ethylisoluminol) derivative-based electrochemiluminescence immunosensor for sensitive laminin detection using PdIr cubes as a mimic peroxidase. Nanoscale, 2016, 8, 8017-8023.	5.6	37
174	Ultrasensitive Fluorescent Assay Based on a Rolling-Circle-Amplification-Assisted Multisite-Strand-Displacement-Reaction Signal-Amplification Strategy. Analytical Chemistry, 2018, 90, 7474-7479.	6.5	37
175	Lattice-Like DNA Tetrahedron Nanostructure as Scaffold to Locate GOx and HRP Enzymes for Highly Efficient Enzyme Cascade Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2871-2877.	8.0	37
176	Construction of Fast-Walking Tetrahedral DNA Walker with Four Arms for Sensitive Detection and Intracellular Imaging of Apurinic/Apyrimidinic Endonuclease 1. Analytical Chemistry, 2022, 94, 8732-8739.	6.5	37
177	Coupling of a Reagentless Electrochemical DNA Biosensor with Conducting Polymer Film and Nanocomposite as Matrices for the Detection of the HIV DNA Sequences. Analytical Letters, 2006, 39, 467-482.	1.8	36
178	Hydrogen peroxide sensor based on horseradish peroxidase immobilized on an electrode modified with DNA-L-cysteine-gold-platinum nanoparticles in polypyrrole film. Mikrochimica Acta, 2009, 167, 159-165.	5.0	36
179	Sensitive pseudobienzyme electrocatalytic DNA biosensor for mercury(II) ion by using the autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Analytica Chimica Acta, 2014, 811, 23-28.	5.4	36
180	Self-enhanced electrochemiluminescence immunosensor based on nanowires obtained by a green approach. Biosensors and Bioelectronics, 2015, 68, 72-77.	10.1	36

#	Article	IF	Citations
181	Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg2+. Biosensors and Bioelectronics, 2016, 86, 630-635.	10.1	36
182	Highly Efficient Target Recycling-Based Netlike Y-DNA for Regulation of Electrocatalysis toward Methylene Blue for Sensitive DNA Detection. ACS Applied Materials & Interfaces, 2018, 10, 25213-25218.	8.0	36
183	Porous Fe3O4@COF-Immobilized gold nanoparticles with excellent catalytic performance for sensitive electrochemical detection of ATP. Biosensors and Bioelectronics, 2022, 197, 113758.	10.1	36
184	A Novel Ratiometric Electrochemical Biosensor Using Only One Signal Tag for Highly Reliable and Ultrasensitive Detection of miRNA-21. Analytical Chemistry, 2022, 94, 5167-5172.	6.5	36
185	A pseudo triple-enzyme cascade amplified aptasensor for thrombin detection based on hemin/G-quadruplex as signal label. Biosensors and Bioelectronics, 2014, 54, 415-420.	10.1	35
186	Highly efficient electrogenerated chemiluminescence quenching of PEI enhanced Ru(bpy)32+ nanocomposite by hemin and Au@CeO2 nanoparticles. Biosensors and Bioelectronics, 2015, 63, 392-398.	10.1	35
187	High-Sensitive Electrochemiluminescence C-Peptide Biosensor via the Double Quenching of Dopamine to the Novel Ru(II)-Organic Complex with Dual Intramolecular Self-Catalysis. Analytical Chemistry, 2017, 89, 11076-11082.	6.5	35
188	A label-free electrochemical biosensor for microRNA detection based on catalytic hairpin assembly and in situ formation of molybdophosphate. Talanta, 2017, 163, 65-71.	5.5	35
189	The combination of ternary electrochemiluminescence system of g-C3N4 nanosheet/TEA/Cu@Cu2O and G-quadruplex-driven regeneration strategy for ultrasensitive bioanalysis. Biosensors and Bioelectronics, 2020, 152, 112006.	10.1	35
190	High-Efficient Electrochemiluminescence of BCNO Quantum Dot-Equipped Boron Active Sites with Unexpected Catalysis for Ultrasensitive Detection of MicroRNA. Analytical Chemistry, 2020, 92, 14723-14729.	6.5	35
191	A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor. Talanta, 2014, 128, 9-14.	5.5	34
192	Intramolecular Self-Enhanced Nanochains Functionalized by an Electrochemiluminescence Reagent and Its Immunosensing Application for the Detection of Urinary \hat{l}^2 2-Microglobulin. ACS Applied Materials & Detection of Urinary Interfaces, 2017, 9, 36239-36246.	8.0	34
193	Host–Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification. Analytical Chemistry, 2017, 89, 8266-8272.	6.5	34
194	Self-accelerated electrochemiluminescence emitters of Ag@SnO2 nanoflowers for sensitive detection of cardiac troponin T. Electrochimica Acta, 2018, 271, 464-471.	5.2	34
195	A Dynamic DNA Machine via Free Walker Movement on Lipid Bilayer for Ultrasensitive Electrochemiluminescent Bioassay. Analytical Chemistry, 2019, 91, 14125-14132.	6.5	34
196	Ultrasensitive electrochemiluminescent detection of cardiac troponin I based on a self-enhanced Ru(II) complex. Talanta, 2014, 129, 219-226.	5.5	33
197	Triple Quenching of a Novel Self-Enhanced Ru(II) Complex by Hemin/G-Quadruplex DNAzymes and Its Potential Application to Quantitative Protein Detection. Analytical Chemistry, 2015, 87, 7602-7609.	6.5	33
198	A sensitive immunosensor via in situ enzymatically generating efficient quencher for electrochemiluminescence of iridium complexes doped SiO2 nanoparticles. Biosensors and Bioelectronics, 2017, 94, 568-574.	10.1	33

#	Article	IF	Citations
199	Pore Confinement-Enhanced Electrochemiluminescence on SnO ₂ Nanocrystal Xerogel with NO ₃ ^{â€"} As Co-Reactant and Its Application in Facile and Sensitive Bioanalysis. Analytical Chemistry, 2020, 92, 2839-2846.	6.5	33
200	A core–brush 3D DNA nanostructure: the next generation of DNA nanomachine for ultrasensitive sensing and imaging of intracellular microRNA with rapid kinetics. Chemical Science, 2021, 12, 15953-15959.	7.4	33
201	A nanohybrid of platinum nanoparticles-porous ZnO–hemin with electrocatalytic activity to construct an amplified immunosensor for detection of influenza. Biosensors and Bioelectronics, 2016, 78, 321-327.	10.1	32
202	In situ generation of electrochemiluminescent DNA nanoflowers as a signal tag for mucin 1 detection based on a strategy of target and mimic target synchronous cycling amplification. Chemical Communications, 2017, 53, 9624-9627.	4.1	32
203	Electrocatalytic Efficiency Regulation between Target-Induced HRP-Mimicking DNAzyme and GOx with Low Background for Ultrasensitive Detection of Thrombin. Analytical Chemistry, 2019, 91, 10289-10294.	6.5	32
204	Amplified impedimetric aptasensor combining target-induced DNA hydrogel formation with pH-stimulated signal amplification for the heparanase assay. Nanoscale, 2017, 9, 2556-2562.	5.6	31
205	Ultrasensitive Photoelectrochemical Assay with PTB7-Th/CdTe Quantum Dots Sensitized Structure as Signal Tag and Benzo-4-chlorohexadienone Precipitate as Efficient Quencher. Analytical Chemistry, 2018, 90, 14521-14526.	6.5	31
206	Application of Antibody-Powered Triplex-DNA Nanomachine to Electrochemiluminescence Biosensor for the Detection of Anti-Digoxigenin with Improved Sensitivity Versus Cycling Strand Displacement Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38648-38655.	8.0	31
207	An ultrasensitive photoelectrochemical biosensor based on [Ru(dcbpy)2dppz]2+/Rose Bengal dyes co-sensitized fullerene for DNA detection. Biosensors and Bioelectronics, 2018, 120, 71-76.	10.1	31
208	DNA Structure-Stabilized Liquid–Liquid Self-Assembled Ordered Au Nanoparticle Interface for Sensitive Detection of MiRNA 155. Analytical Chemistry, 2021, 93, 11019-11024.	6.5	31
209	Kill Three Birds with One Stone: Poly(3,4-ethylenedioxythiophene)-Hosted Ag Nanoclusters with Boosted Cathodic Electrochemiluminescence for Biosensing Application. Analytical Chemistry, 2021, 93, 1120-1125.	6.5	30
210	Boron and Nitrogen-Codoped Carbon Dots as Highly Efficient Electrochemiluminescence Emitters for Ultrasensitive Detection of Hepatitis B Virus DNA. Analytical Chemistry, 2022, 94, 7601-7608.	6.5	30
211	Highly sensitive electrochemical assay for Nosema bombycis gene DNA PTP1 via conformational switch of DNA nanostructures regulated by H+ from LAMP. Biosensors and Bioelectronics, 2018, 106, 186-192.	10.1	29
212	A novel fluorescent assay for the ultrasensitive detection of miRNA-21 with the use of G-quadruplex structures as an immobilization material for a signal indicator. Chemical Communications, 2019, 55, 6453-6456.	4.1	29
213	Engineering a Rolling-Circle Strand Displacement Amplification Mediated Label-Free Ultrasensitive Electrochemical Biosensing Platform. Analytical Chemistry, 2021, 93, 9568-9574.	6.5	29
214	Photoelectrochemical Assay Based on SnO ₂ /BiOBr pâ€"n Heterojunction for Ultrasensitive DNA Detection. Analytical Chemistry, 2021, 93, 12995-13000.	6.5	29
215	Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes. Analytica Chimica Acta, 2014, 828, 80-84.	5.4	28
216	Amplified electrochemiluminescent aptasensor using mimicking bi-enzyme nanocomplexes as signal enhancement. Analytica Chimica Acta, 2014, 809, 47-53.	5.4	28

#	Article	IF	CITATIONS
217	A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires. Analytica Chimica Acta, 2014, 832, 51-57.	5.4	28
218	Organic Dots Embedded in Mesostructured Silica Xerogel as High-Performance ECL Emitters: Preparation and Application for MicroRNA-126 Detection. ACS Applied Materials & Interfaces, 2020, 12, 3945-3952.	8.0	28
219	A SERS biosensor constructed by calcined ZnO substrate with high-efficiency charge transfer for sensitive detection of Pb2+. Sensors and Actuators B: Chemical, 2021, 343, 130142.	7.8	28
220	An amplified electrochemiluminescent aptasensor using Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C ₆₀ nanocomposites as a signal enhancement tag. Nanoscale, 2015, 7, 2085-2092.	5.6	27
221	Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells. Chemical Science, 2016, 7, 7094-7100.	7.4	27
222	Efficient Electrochemical Self-Catalytic Platform Based on <scp>l</scp> -Cys-hemin/G-quadruplex and Its Application for Bioassay. Analytical Chemistry, 2018, 90, 9109-9116.	6.5	27
223	An ultrasensitive electrochemiluminescence biosensor for multiple detection of microRNAs based on a novel dual circuit catalyzed hairpin assembly. Chemical Communications, 2018, 54, 10148-10151.	4.1	27
224	3D Matrix-Arranged AuAg Nanoclusters As Electrochemiluminescence Emitters for Click Chemistry-Driven Signal Switch Bioanalysis. Analytical Chemistry, 2020, 92, 2566-2572.	6.5	27
225	Programmable mismatch-fueled high-efficiency DNA signal converter. Chemical Science, 2020, 11, 148-153.	7.4	27
226	Study on an immunosensor based on gold nanoparticles and a nano-calcium carbonate/Prussian blue modified glassy carbon electrode. Mikrochimica Acta, 2009, 165, 53-58.	5.0	26
227	Deposited gold nanocrystals enhanced porous PTCA–Cys layer for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 2013, 183, 157-162.	7.8	26
228	<scp> </scp> -Cysteine induced hemin/G-quadruplex concatemers electrocatalytic amplification with Ptâ€"Pd supported on fullerene as a nanocarrier for sensing the spore wall protein of Nosema bombycis. Chemical Communications, 2015, 51, 1255-1258.	4.1	26
229	High throughput immunosenor based on multi-label strategy and a novel array electrode. Scientific Reports, 2014, 4, 4747.	3.3	26
230	Highly sensitive electrochemiluminescence immunosensor based on ABEI/H2O2 system with PFO dots as enhancer for detection of kidney injury molecule-1. Biosensors and Bioelectronics, 2018, 116, 16-22.	10.1	26
231	Novel D-A-D-Type Supramolecular Aggregates with High Photoelectric Activity for Construction of Ultrasensitive Photoelectrochemical Biosensor. Analytical Chemistry, 2019, 91, 12468-12475.	6.5	26
232	Bipedal DNA walker mediated enzyme-free exponential isothermal signal amplification for rapid detection of microRNA. Chemical Communications, 2019, 55, 13932-13935.	4.1	26
233	High-Efficient Electrochemiluminescence of Au Nanoclusters Induced by the Electrosensitizer Cu ₂ 0: The Mechanism Insights from the Electrogenerated Process. Analytical Chemistry, 2021, 93, 10212-10219.	6.5	26
234	DNA Three-Way Junction with Multiple Recognition Regions Mediated an Unconfined DNA Walker for Electrochemical Ultrasensitive Detection of miRNA-182-5p. Analytical Chemistry, 2021, 93, 12981-12986.	6.5	26

#	Article	IF	Citations
235	Highly Efficient Electrochemiluminescence of MnS:CdS@ZnS Core–Shell Quantum Dots for Ultrasensitive Detection of MicroRNA. Analytical Chemistry, 2022, 94, 6874-6881.	6.5	26
236	An amplified electrochemical proximity immunoassay for the total protein of Nosema bombycis based on the catalytic activity of Fe3O4NPs towards methylene blue. Biosensors and Bioelectronics, 2016, 81, 382-387.	10.1	25
237	Polyacrylamide Gel-Contained Zinc Finger Peptide as the "Lock―and Zinc Ions as the "Key―for Construction of Ultrasensitive Prostate-Specific Antigen SERS Immunosensor. ACS Applied Materials & Interfaces, 2018, 10, 15200-15206.	8.0	25
238	Dual triggers induced disassembly of DNA polymer decorated silver nanoparticle for ultrasensitive electrochemical Pb2+ detection. Analytica Chimica Acta, 2018, 1034, 56-62.	5.4	25
239	DNA Cascade Reaction with High-Efficiency Target Conversion for Ultrasensitive Electrochemiluminescence microRNA Detection. Analytical Chemistry, 2019, 91, 10258-10265.	6.5	25
240	A pseudo triple-enzyme electrochemical aptasensor based on the amplification of Pt–Pd nanowires and hemin/G-quadruplex. Analytica Chimica Acta, 2014, 834, 45-50.	5.4	24
241	Electrochemical Biosensor for Organophosphate Pesticides and Huperzineâ€A Detection Based on Pd Wormlike Nanochains/Graphitic Carbon Nitride Nanocomposites and Acetylcholinesterase. Electroanalysis, 2016, 28, 304-311.	2.9	24
242	l-cysteine induced manganese porphyrin electrocatalytic amplification with 3D DNA-Au@Pt nanoparticles as nanocarriers for sensitive electrochemical aptasensor. Biosensors and Bioelectronics, 2016, 79, 86-91.	10.1	24
243	A Peptide Cleavage-Based Ultrasensitive Electrochemical Biosensor with an Ingenious Two-Stage DNA Template for Highly Efficient DNA Exponential Amplification. Analytical Chemistry, 2017, 89, 8951-8956.	6.5	24
244	BSA stabilized tetraphenylethylene nanocrystals as aggregation-induced enhanced electrochemiluminescence emitters for ultrasensitive microRNA assay. Chemical Communications, 2019, 55, 9959-9962.	4.1	24
245	Double Hairpin DNAs Recognition Induced a Novel Cascade Amplification for Highly Specific and Ultrasensitive Electrochemiluminescence Detection of DNA. Analytical Chemistry, 2021, 93, 7987-7992.	6.5	24
246	Synthesis and application of a new copper(II) complex containing oflx and leof. Russian Journal of Inorganic Chemistry, 2008, 53, 704-706.	1.3	23
247	A novel immunosensor for carcinoembryonic antigen based on poly(diallyldimethylammonium) Tj ETQq1 1 0.7843 Mikrochimica Acta, 2010, 171, 297-304.	14 rgBT 5.0	Overlock 10 23
248	Functionalized graphene oxide-based carbon paste electrode for potentiometric detection of copper ion(ii). Analytical Methods, 2012, 4, 3332.	2.7	23
249	3,4,9,10â€Perylenetetracarboxylic Acid/Hemin Nanocomposites Act as Redox Probes and Electrocatalysts for Constructing a Pseudobienzymeâ€Channeling Amplified Electrochemical Aptasensor. Chemistry - A European Journal, 2012, 18, 14186-14191.	3.3	23
250	Novel ABEI/Dissolved O ₂ /Ag ₃ BiO ₃ Nanocrystals ECL Ternary System with High Luminous Efficiency for Ultrasensitive Determination of MicroRNA. Analytical Chemistry, 2019, 91, 11447-11454.	6.5	23
251	Crystallization-Induced Enhanced Electrochemiluminescence from Tetraphenyl Alkene Nanocrystals for Ultrasensitive Sensing. Analytical Chemistry, 2021, 93, 10890-10897.	6.5	23
252	Amperometric biosensor for nitrite and hydrogen peroxide based on hemoglobin immobilized on gold nanoparticles/polythionine/platinum nanoparticles modified glassy carbon electrode. Journal of Chemical Technology and Biotechnology, 2012, 87, 570-574.	3.2	22

#	Article	IF	Citations
253	Click chemistry-mediated catalytic hairpin self-assembly for amplified and sensitive fluorescence detection of Cu ²⁺ in human serum. Chemical Communications, 2015, 51, 12637-12640.	4.1	22
254	Electrochemiluminescent Pb ²⁺ -Driven Circular Etching Sensor Coupled to a DNA Micronet-Carrier. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39812-39820.	8.0	22
255	A zirconium-based metal–organic framework sensitized by thioflavin-T for sensitive photoelectrochemical detection of C-reactive protein. Chemical Communications, 2019, 55, 10772-10775.	4.1	22
256	Amperometric Immunosensor for the Determination of αâ€1â€Fetoprotein Based on Coreâ€Shellâ€Shell Prussian Blueâ€BSAâ€Nanogold Functionalized Interface. Electroanalysis, 2008, 20, 2185-2191.	2.9	21
257	Ultrasensitive amperometric immunosensor for the determination of carcinoembryonic antigen based on a porous chitosan and gold nanoparticles functionalized interface. Mikrochimica Acta, 2009, 167, 217-224.	5.0	21
258	A Solidâ€State Electrochemiluminescence Immunosensor Based on MWCNTsâ€Nafion and Ru(bpy) < sub>3 < /sub> < sup>2+ < /sup> / Nanoâ€Pt Nanocomposites for Detection of <i>α < /i> â€Fetoprotein. Electroanalysis, 2011, 23, 1418-1426.</i>	2.9	21
259	The Ru complex and hollow gold nanoparticles branched-hydrogel as signal probe for construction of electrochemiluminescent aptasensor. Biosensors and Bioelectronics, 2016, 77, 7-12.	10.1	21
260	Self-enhanced PEI-Ru(II) complex with polyamino acid as booster to construct ultrasensitive electrochemiluminescence immunosensor for carcinoembryonic antigen detection. Analytica Chimica Acta, 2018, 1001, 112-118.	5. 4	21
261	Defect engineering of In ₂ S ₃ nanoflowers through tungsten doping for ultrasensitive visible-light-excited photoelectrochemical sensors. Journal of Materials Chemistry C, 2021, 9, 7384-7391.	5. 5	21
262	Modular engineering of gold-silver nanocluster supermolecular structure endow strong electrochemiluminescence for ultrasensitive bioanalysis. Biosensors and Bioelectronics, 2021, 190, 113449.	10.1	21
263	Determination of carcinoembryonic antigen using a novel amperometric enzyme-electrode based on layer-by-layer assembly of gold nanoparticles and thionine. Science in China Series B: Chemistry, 2007, 50, 97-104.	0.8	20
264	Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein. Mikrochimica Acta, 2014, 181, 679-685.	5.0	20
265	A novel ECL biosensor for \hat{l}^2 -lactamase detection: Using RU(II) linked-ampicillin complex as the recognition element. Biosensors and Bioelectronics, 2015, 70, 221-225.	10.1	20
266	RNA-regulated molecular tweezers for sensitive fluorescent detection of microRNA from cancer cells. Biosensors and Bioelectronics, 2015, 71, 98-102.	10.1	20
267	Intense electrochemiluminescence from an organic microcrystal accelerated H ₂ O ₂ -free luminol system for microRNA detection. Chemical Communications, 2020, 56, 9000-9003.	4.1	20
268	A DNA nanopillar as a scaffold to regulate the ratio and distance of mimic enzymes for an efficient cascade catalytic platform. Chemical Science, 2021, 12, 407-411.	7.4	20
269	A novel electrochemiluminescence aptasensor based on in situ generated proline and matrix polyamidoamine dendrimers as coreactants for signal amplication. Biosensors and Bioelectronics, 2014, 55, 313-317.	10.1	19
270	Sensing glucose based on its affinity for concanavalin A on a glassy carbon electrode modified with a C60 fullerene nanocomposite. Mikrochimica Acta, 2015, 182, 2215-2221.	5.0	19

#	Article	IF	CITATIONS
271	Preparation of porous MoP-C microspheres without a hydrothermal process as a high capacity anode for lithium ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 1432-1437.	6.0	19
272	Highly-efficient luminol immobilization approach and exponential strand displacement reaction based electrochemiluminescent strategy for monitoring microRNA expression in cell. Biosensors and Bioelectronics, 2019, 132, 62-67.	10.1	19
273	Programming a " <i>Crab Claw</i> ―like DNA Nanomachine as a Super Signal Amplifier for Ultrasensitive Electrochemical Assay of Hg ²⁺ . Analytical Chemistry, 2021, 93, 12075-12080.	6.5	19
274	Simple construction of an enzymatic glucose biosensor based on a nanocomposite film prepared in one step from iron oxide, gold nanoparticles, and chitosan. Mikrochimica Acta, 2011, 173, 369-374.	5.0	18
275	Ultrasensitive electrochemical immunosensors for clinical immunoassay using gold nanoparticle coated multi-walled carbon nanotubes as labels and horseradish peroxidase as an enhancer. Analytical Methods, 2013, 5, 5279.	2.7	18
276	An efficient electrochemiluminescence amplification strategy via bis-co-reaction accelerator for sensitive detection of laminin to monitor overnutrition associated liver damage. Biosensors and Bioelectronics, 2017, 98, 317-324.	10.1	18
277	Combining Porous Magnetic Ni@C Nanospheres and CaCO ₃ Microcapsule as Surface-Enhanced Raman Spectroscopy Sensing Platform for Hypersensitive C-Reactive Protein Detection. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33707-33712.	8.0	18
278	Wavelength distinguishable signal quenching and enhancing toward photoactive material 3,4,9,10-perylenetetracarboxylic dianhydride for simultaneous assay of dual metal ions. Biosensors and Bioelectronics, 2019, 145, 111702.	10.1	18
279	A highly sensitive photoelectrochemical VEGF ₁₆₅ biosensor with a dual signal amplification strategy by using AgVO ₃ as a photoactive material. Chemical Communications, 2019, 55, 8076-8078.	4.1	18
280	DNA Structure Transition-Induced Affinity Switch for Biosensing Based on the Strong Electrochemiluminescence Platform from Organic Microcrystals. Analytical Chemistry, 2020, 92, 3940-3948.	6.5	18
281	Multiregion Linear DNA Walker-Mediated Ultrasensitive Electrochemical Biosensor for miRNA Detection. Analytical Chemistry, 2022, 94, 10524-10530.	6.5	18
282	Multilayer Assembly of Hemoglobin and Colloidal Gold Nanoparticles on Multiwall Carbon Nanotubes/Chitosan Composite for Detecting Hydrogen Peroxide. Electroanalysis, 2008, 20, 2141-2147.	2.9	17
283	A signal-on electrochemiluminescence aptasensor based on the quenching effect of manganese dioxide for sensitive detection of carcinoembryonic antigen. RSC Advances, 2014, 4, 56756-56761.	3.6	17
284	A biosensor based on a 3D-DNA walking machine network and distance-controlled electrochemiluminescence energy transfer for ultrasensitive detection of tenascin C and lead ions. Chemical Communications, 2018, 54, 8741-8744.	4.1	17
285	Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Mikrochimica Acta, 2018, 185, 432.	5.0	17
286	A dynamic 3D DNA nanostructure based on silicon-supported lipid bilayers: a highly efficient DNA nanomachine for rapid and sensitive sensing. Chemical Communications, 2019, 55, 13414-13417.	4.1	17
287	Enhanced cathodic photocurrent derived from N-type S doped-Bi2WO6 nanoparticles through an antenna-like strategy for photoelectrochemical biosensor. Biosensors and Bioelectronics, 2022, 207, 114176.	10.1	17
288	Tetrahedral DNA Nanostructure with Multiple Target-Recognition Domains for Ultrasensitive Electrochemical Detection of Mucin 1. Analytical Chemistry, 2022, 94, 6860-6865.	6.5	17

#	Article	IF	Citations
289	Potentiometric Immunosensor Based on Immobilization of Hepatitis B Surface Antibody on Platinum Electrode Modified Silver Colloids and Polyvinyl Butyral as Matrixes. Electroanalysis, 2005, 17, 155-161.	2.9	16
290	Dual-Amplification of Antigen–Antibody Interactions via Backfilling Gold Nanoparticles on (3-Mercaptopropyl) Trimethoxysilane Sol-Gel Functionalized Interface. Electroanalysis, 2007, 19, 479-486.	2.9	16
291	Intercalation of quantum dots as the new signal acquisition and amplification platform for sensitive electrochemiluminescent detection of microRNA. Analytica Chimica Acta, 2015, 891, 130-135.	5.4	16
292	Electrochemical Aptamer Biosensor Based on ATP-Induced 2D DNA Structure Switching for Rapid and Ultrasensitive Detection of ATP. Analytical Chemistry, 2022, 94, 6819-6826.	6.5	16
293	Highly Efficient Electrochemiluminescence Based on Luminol/MoS ₂ Quantum Dots@Zeolitic Imidazolate Framework-8 as an Emitter for Ultrasensitive Detection of MicroRNA. Analytical Chemistry, 2022, 94, 9106-9113.	6.5	16
294	Electrochemical Immunoanalysis for Carcinoembryonic Antigen Based on Multilayer Architectures of Gold Nanoparticles and Polycation Biomimetic Interface on Glassy Carbon Electrode. Electroanalysis, 2006, 18, 2451-2457.	2.9	15
295	Electrochemical sensor based on Prussian blue nanorods and gold nanochains for the determination of H2O2. European Food Research and Technology, 2011, 232, 87-95.	3.3	15
296	A nitrite and hydrogen peroxide sensor based on Hb adsorbed on Au nanorods and graphene oxide coated by polydopamine. Analytical Methods, 2014, 6, 758-765.	2.7	15
297	Highly enhanced electrochemiluminescence based on pseudo triple-enzyme cascade catalysis and in situ generation of co-reactant for thrombin detection. Analyst, The, 2014, 139, 1030-1036.	3.5	15
298	Enhancing photoelectrochemical performance of ZnIn ₂ S ₄ by phosphorus doping for sensitive detection of miRNA-155. Chemical Communications, 2020, 56, 14275-14278.	4.1	15
299	Fullerenol as a photoelectrochemical nanoprobe for discrimination and ultrasensitive detection of amplification-free single-stranded DNA. Biosensors and Bioelectronics, 2021, 173, 112802.	10.1	15
300	Engineering a high-efficient DNA amplifier for biosensing application based on perylene decorated Ag microflowers as novel electrochemiluminescence indicators. Biosensors and Bioelectronics, 2021, 182, 113178.	10.1	15
301	Discrimination between Cancer Cells and DNA-Damaged Cells: Pre-miRNA Region Recognition Based on Hyperbranched Hybrid Chain Reaction Amplification for Simultaneous Sensitive Detection and Imaging of miRNA and Pre-miRNA. Analytical Chemistry, 2022, 94, 9911-9918.	6.5	15
302	A Highly Selective Salicylate Electrode Based on Schiff Base Complexes of Cobalt(III). Analytical Letters, 2003, 36, 2379-2392.	1.8	14
303	A New Enzyme Immobilization Technique Based on Thionineâ€Bovine Serum Albumin Conjugate and Gold Colloidal Nanoparticles for Reagentless Amperometric Biosensor Applications. Electroanalysis, 2008, 20, 418-425.	2.9	14
304	Gold nanolabels and enzymatic recycling dual amplification-based electrochemical immunosensor for the highly sensitive detection of carcinoembryonic antigen. Science China Chemistry, 2011, 54, 1770-1776.	8.2	14
305	A well-directional three-dimensional DNA walking nanomachine that runs in an orderly manner. Chemical Science, 2020, 11, 2193-2199.	7.4	14
306	Electrochemical biomolecule detection based on the regeneration of high-efficiency cascade catalysis for bifunctional nanozymes. Chemical Communications, 2020, 56, 2276-2279.	4.1	14

#	Article	IF	Citations
307	Cu-doped In2S3 based DNA nanocluster for ultrasensitive photoelectrochemical detection of VEGF165. Sensors and Actuators B: Chemical, 2021, 340, 129942.	7.8	14
308	Programmable Highâ€Speed and Hyperâ€Efficiency DNA Signal Magnifier. Advanced Science, 2022, 9, e2104084.	11.2	14
309	Reagentless Immunosensing Assay via Electrochemical Impedance for Hepatitis B Surface Antigen Monitoring Based on Polypyrrole and Gold Nanoparticles as Matrices. Chinese Journal of Chemistry, 2006, 24, 59-64.	4.9	13
310	On-Off PVC Membrane Based Potentiometric Immunosensor for Label-Free Detection of Alpha-Fetoprotein. Electroanalysis, 2007, 19, 1131-1138.	2.9	13
311	Electrochemiluminescence Sensor Based on Multiwalled Carbon Nanotubes Doped Polyvinyl Butyral Film Containing Ru(bpy) $m{ {-{3}^{2+}}}$ as Chemiluminescence Reagent. Electroanalysis, 2009, 21, 1636-1640.	2.9	13
312	Cyclovoltammetric acetylcholinesterase activity assay after inhibition and subsequent reactivation by using a glassy carbon electrode modified with palladium nanorods composited with functionalized C60 fullerene. Mikrochimica Acta, 2016, 183, 2403-2409.	5.0	13
313	Potentiometric Iodide Selectivity of Polymerâ€Membrane Sensors Based on Co(II) Triazole Derivative. Electroanalysis, 2008, 20, 1434-1439.	2.9	12
314	Nanostructured multi-walled carbon nanotubes derivate based on carbon paste electrode for potentiometric detection of Ag+ ions. Analytical Methods, 2012, 4, 454.	2.7	12
315	Terminal protection of small molecule-linked ssDNA for label-free and sensitive fluorescent detection of folate receptor. Talanta, 2014, 128, 237-241.	5.5	12
316	An electrochemiluminescence biosensor for dopamine based on the recognition of fullerene-derivative and the quenching of cuprous oxide nanocrystals. RSC Advances, 2015, 5, 58019-58023.	3.6	12
317	Label-free and homogeneous aptamer proximity binding assay for fluorescent detection of protein biomarkers in human serum. Talanta, 2015, 141, 230-234.	5.5	12
318	RNA responsive and catalytic self-assembly of DNA nanostructures for highly sensitive fluorescence detection of microRNA from cancer cells. Chemical Communications, 2015, 51, 16494-16497.	4.1	12
319	New Signal Probe Integrated with ABEI as ECL Luminophore and Ag Nanoparticles Decorated CoS Nanoflowers as Bis-Co-Reaction Accelerator to Develop a Ultrasensitive cTnT Immunosensor. Journal of the Electrochemical Society, 2018, 165, B686-B693.	2.9	12
320	Highly sensitive biosensor based on target induced dual signal amplification to electrochemiluminescent nanoneedles of Ru(II) complex. Biosensors and Bioelectronics, 2019, 140, 111344.	10.1	12
321	FeS ₂ â^'AuNPs Nanocomposite as Mimicking Enzyme for Constructing Signalâ€off Sandwichâ€type Electrochemical Immunosensor Based on Electroactive Nickel Hexacyanoferrate as Matrix. Electroanalysis, 2019, 31, 1019-1025.	2.9	12
322	Ladder-Like DNA Nanostructure-Mediated Cascade Catalytic Nanomachine for Construction of Ultrasensitive Biosensors. Analytical Chemistry, 2022, 94, 1264-1270.	6.5	12
323	A capacitive sensor based on molecularly imprinted polymers and poly(p-aminobenzene sulfonic acid) film for detection of pazufloxacin mesilate. Science in China Series B: Chemistry, 2007, 50, 547-553.	0.8	11
324	Biomoleculeâ€Doped Organic/Inorganic Hybrid Nanocomposite Film for Labelâ€Free Electrochemical Immunoassay of αâ€1â€Fetoprotein. Electroanalysis, 2008, 20, 989-995.	2.9	11

#	Article	IF	Citations
325	A novel "signal on―photoelectrochemical strategy based on dual functional hemin for microRNA assay. Chemical Communications, 2019, 55, 9721-9724.	4.1	11
326	Photoelectrochemical aptamer-based sensing of the vascular endothelial growth factor by adjusting the light harvesting efficiency of g-C3N4 via porous carbon spheres. Mikrochimica Acta, 2019, 186, 275.	5.0	11
327	Simple and Regulable DNA Dimer Nanodevice to Arrange Cascade Enzymes for Sensitive Electrochemical Biosensing. Analytical Chemistry, 2020, 92, 14197-14202.	6.5	11
328	Co-catalytic Fc/HGQs/Fe ₃ O ₄ nanocomposite mediated enzyme-free electrochemical biosensor for ultrasensitive detection of MicroRNA. Chemical Communications, 2021, 57, 5179-5182.	4.1	11
329	A sensitive label-free photoelectrochemical aptasensor based on a novel PTB7-Th/H2O2 system with unexpected photoelectric performance for C-reactive protein analysis. Biosensors and Bioelectronics, 2021, 181, 113162.	10.1	11
330	Ultrasensitive Fluorescence Detection and Accurate Colocalization Visualization of Dual-miRNAs in Cancer Cells Based on the Conjugated Chain Reaction of Multifunctional Pentagon DNA Nanostructures. Analytical Chemistry, 2022, 94, 9026-9032.	6.5	11
331	An Amperometric Immunosensor Based on Layerâ€byâ€Layer Assembly of <scp>L</scp> â€Cysteine and Nanosized Prussian Blue on Gold Electrode for Determination of Human Chorionic Gonadotrophin. Electroanalysis, 2009, 21, 707-714.	2.9	10
332	Ion exchange for synthesis of porous Cu _x O/SnO ₂ /ZnSnO ₃ microboxes as a high-performance lithium-ion battery anode. New Journal of Chemistry, 2018, 42, 12008-12012.	2.8	10
333	Two kinds of DNA enzyme-powered bidirectional one-dimensional DNA walking nanomachine for payload release and biosensing. Biosensors and Bioelectronics, 2021, 175, 112848.	10.1	10
334	Dual catalytic hairpin assembly and enzyme cascade catalysis amplification based sensitive dual-mode biosensor with significantly enhanced opposite signal readout. Sensors and Actuators B: Chemical, 2021, 348, 130676.	7.8	10
335	An Amperometric Biosensor for Glucose Based on Selfâ€Assembling Nanoparticles and Electrosynthesis of Polyâ€oâ€Diaminobenzene on the Prussian Blueâ€Modified Gold Electrode. Analytical Letters, 2005, 38, 1085-1097.	1.8	9
336	A Novel Amperometric Biosensor for Determination of Hydrogen Peroxide Based on Nafion and Polythionine as Well as Gold Nanoparticles and Gelatin as Matrixes. Analytical Letters, 2006, 39, 483-494.	1.8	9
337	[Ru(dcbpy) 2 dppz] 2+ /Fullerene Cosensitized PTB7â€Th for Ultrasensitive Photoelectrochemical MicroRNA Assay. Chemistry - A European Journal, 2019, 25, 4087-4092.	3.3	9
338	Efficient electrochemiluminescence of perylene nanocrystal entrapped in hierarchical porous Au nanoparticle-graphene oxide film for bioanalysis based on one-pot DNA amplification. Electrochimica Acta, 2020, 332, 135389.	5 . 2	9
339	A noncovalent Ru(phen)32+@CNTs nanocomposite and its application as a solid-state electrochemiluminescence signal probe. RSC Advances, 2014, 4, 1955-1960.	3.6	8
340	An Electrochemical Assay Based on Acid-Induced Dissolution of Nanoparticles to Trigger Enzyme-Free Cleavage for Target Detection. Journal of the Electrochemical Society, 2018, 165, B223-B226.	2.9	8
341	MnO _x MFs as a coreaction accelerator for the construction of a novel ternary electrochemiluminescence system: ultrasensitive detection of microRNA. Chemical Communications, 2020, 56, 976-979.	4.1	8
342	Rapid self-disassembly of DNA diblock copolymer micelles <i>via</i> target induced hydrophilicâ€"hydrophobic regulation for sensitive MiRNA detection. Chemical Communications, 2020, 56, 10215-10218.	4.1	8

#	Article	lF	CITATIONS
343	Mismatch-fueled catalytic hairpin assembly mediated ultrasensitive biosensor for rapid detection of MicroRNA. Analytica Chimica Acta, 2022, 1204, 339663.	5.4	8
344	Novel Membrane Potentiometric Thiocyanate Sensor Based on Tribenzyltin(IV) Dithiocarbamate. Electroanalysis, 2005, 17, 1003-1007.	2.9	7
345	Double layer enzyme modified carbon nanotubes as label for sandwich-type immunoassay of tumor markers. Mikrochimica Acta, 2011, 172, 373-378.	5.0	7
346	Terminal protection of small molecule-linked ssDNA for label-free and highly sensitive colorimetric detection of folate receptor biomarkers. RSC Advances, 2015, 5, 6100-6105.	3.6	7
347	An ATP-fueled nucleic acid signal amplification strategy for highly sensitive microRNA detection. Chemical Communications, 2018, 54, 10897-10900.	4.1	7
348	High-sensitive electrochemiluminescent analysis based on co-reactive high-molecular polymer and dual catalysis to generate oxygen in situ. Analytica Chimica Acta, 2019, 1081, 65-71.	5 . 4	7
349	Sensitive immunosensor based on high effective resonance energy transfer of lucigenin to the cathodic electrochemiluminescence of tris(bipyridine) Ru(II) complex. Biosensors and Bioelectronics, 2020, 150, 111915.	10.1	7
350	P3HT-PbS nanocomposites with mimicking enzyme as bi-enhancer for ultrasensitive photocathodic biosensor. Biosensors and Bioelectronics, 2022, 197, 113806.	10.1	7
351	Highly sensitive photoelectrochemical biosensor based on Au nanoparticles sensitized zinc selenide quantum dots for DNA detection. Sensors and Actuators B: Chemical, 2022, 357, 131255.	7.8	7
352	Highly Thiocyanate-Selective PVC Membrane Electrode Based on Lipophilic Ferrocene Derivative. Electroanalysis, 2005, 17, 1865-1869.	2.9	6
353	Highly enhanced electrochemiluminescent strategy for tumor biomarkers detection with in situ generation of l-homocysteine for signal amplification. Analytica Chimica Acta, 2014, 815, 16-21.	5.4	6
354	Graphene nanosensor for highly sensitive fluorescence turn-on detection of Hg2+based on target recycling amplification. RSC Advances, 2014, 4, 39082.	3.6	6
355	An Electrochemical Biosensor for Detection of DNA Species Related to Oral Cancer Based on a Particular Host-Guest Recognition-Assisted Strategy for Signal Tag In Situ. Journal of the Electrochemical Society, 2018, 165, B289-B295.	2.9	6
356	A near-infrared light-controlled, ultrasensitive one-step photoelectrochemical detection of dual cell apoptosis indicators in living cancer cells. Chemical Communications, 2020, 56, 8488-8491.	4.1	6
357	New Ni(II) Ion-Selective Electrode Based on the N-S Schiff Base Ligand as Neutral Carrier in PVC Matrix. Analytical Letters, 2009, 42, 2411-2429.	1.8	5
358	Potentiometric Membrane Electrode for Cr(III) Ion Based on a New Aryl Amide Bifunctional Bridging Ligand as a Neutral Carrier. Journal of the Chinese Chemical Society, 2009, 56, 676-682.	1.4	5
359	Amperometric sensor for nitrite using a glassy carbon electrode modified with thionine functionalized MWCNTs/Au nanorods/SDS nanohybrids. Surface and Interface Analysis, 2012, 44, 1233-1237.	1.8	5
360	Hemin Functionalized Multiwalled Carbon Nanotubes as a Matrix for Sensitive Electrogenerated Chemiluminescence Cholesterol Biosensor. Electroanalysis, 2013, 25, 2700-2706.	2.9	5

#	Article	IF	CITATIONS
361	K-junction structure mediated exponential signal amplification strategy for microRNA detection in electrochemiluminescence biosensor. Analyst, The, 2017, 142, 2185-2190.	3.5	5
362	Highly sensitive potentiometric immunosensor for hepatitis B surface antigen diagnosis. Science in China Series B: Chemistry, 2005, 48, 49-57.	0.8	4
363	Electrochemical Immunosensing Strategies Based on Immobilization of Anti-IgC on Mixed Self-Assembly Monolayers Carrying Surface Amide or Carboxyl Groups. Analytical Letters, 2006, 39, 1809-1821.	1.8	4
364	Salicylateâ€selective Potential Response of an Electrode Based on a Copper(II)â€phthalocyanine Derivative as an Ionophore. Chinese Journal of Chemistry, 2009, 27, 99-104.	4.9	4
365	Electrochemiluminescence from a biocatalysis accelerated N-(aminobutyl)-N-(ethylisoluminol)/dissolved O2 system for microRNA detection. Mikrochimica Acta, 2021, 188, 205.	5.0	4
366	Direct electrochemistry and enzymatic activity of hemoglobin in positively charged colloid Au nanoparticles and hemoglobin layer-by-layer self-assembly films. Science in China Series B: Chemistry, 2007, 50, 620-628.	0.8	3
367	Electrochemical immunoassay for human chorionic gonadotrophin based on Pt hollow nanospheres and silver/titanium dioxide nanocomposite matrix. Journal of Chemical Technology and Biotechnology, 2010, 85, 577-582.	3.2	3
368	Aptamer-based competitive electrochemical assay of small biomolecules. Science China Chemistry, 2011, 54, 822-826.	8.2	3
369	Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Based on Gold Nanoparticlesâ€PTCA ys Composites Modified Electrodes. Journal of the Chinese Chemical Society, 2015, 62, 739-746.	1.4	3
370	An amperometric immunosensor for detection of Streptococcus suis serotype 2 using a nickel–gold nanocomposite as a tracer matrix. RSC Advances, 2015, 5, 79323-79328.	3.6	3
371	Aggregationâ€Induced Synergism by Hydrophobicâ€Driven Selfâ€Assembly of Amphiphilic Oligonucleotides. Chemistry - A European Journal, 2020, 26, 8767-8773.	3.3	3
372	Pyrenecarboxaldehyde encapsulated porous TiO ₂ nanoreactors for monitoring cellular GSH levels. Nanoscale, 2022, 14, 5751-5757.	5.6	3
373	One-Step Digital Droplet Auto-Catalytic Nucleic Acid Amplification with High-Throughput Fluorescence Imaging and Droplet Tracking Computation. Analytical Chemistry, 2022, 94, 9166-9175.	6.5	3
374	Glucose oxidase as a blocking agent-based signal amplification strategy for the fabrication of label-free amperometric immunosensors. Science China Chemistry, 2011, 54, 536-544.	8.2	2
375	A novel self-enhancement NCNDs-BPEI-Ru nanocomposite with highly efficient electrochemiluminescence as signal probe for ultrasensitive detection of MTB. Sensors and Actuators B: Chemical, 2022, 354, 131252.	7.8	2
376	An orbitron-like 3D DNA clip-based nanomachine and its application for sensitive fluorescent bioassay of MicroRNA. Analytica Chimica Acta, 2020, 1126, 24-30.	5.4	1
377	Facile Synthesis of Amino Shell-Magnetic Core Nanoparticles and Application for Direct Electrochemistry. Analytical Letters, 2012, 45, 2697-2706.	1.8	0
378	Tetrakis (4-aminophenyl) ethene-doped perylene microcrystals with strong electrochemiluminescence for biosensing applications. Analyst, The, 2020, 145, 5260-5265.	3.5	0