
Yicheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9283245/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction. Journal of Power Sources, 2009, 188, 156-162.	7.8	152
2	Intermediate temperature fuel cell with a doped ceria–carbonate composite electrolyte. Journal of Power Sources, 2010, 195, 3149-3154.	7.8	134
3	Recent progress on solid oxide fuel cell: Lowering temperatureÂandÂutilizing non-hydrogen fuels. International Journal of Hydrogen Energy, 2013, 38, 16498-16517.	7.1	131
4	A direct carbon fuel cell with (molten carbonate)/(doped ceria) composite electrolyte. Journal of Power Sources, 2010, 195, 5581-5586.	7.8	120
5	Single layer fuel cell based on a composite of Ce0.8Sm0.2O2â~îr–Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6â~îr. Journal of Power Sources, 2014, 249, 270-276.	7.8	96
6	Utilization of corn cob biochar in a direct carbon fuel cell. Journal of Power Sources, 2014, 270, 312-317.	7.8	91
7	Membranes in non-aqueous redox flow battery: A review. Journal of Power Sources, 2021, 500, 229983.	7.8	70
8	A-Site Ordered Double Perovskite with in Situ Exsolved Core–Shell Nanoparticles as Anode for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 6995-7005.	8.0	67
9	Effect of citric acid addition on the morphology and activity of Ni2P supported on mesoporous zeolite ZSM-5 for the hydrogenation of 4,6-DMDBT and phenanthrene. Journal of Catalysis, 2017, 345, 295-307.	6.2	62
10	Ni2P clusters on zeolite nanosheet assemblies with high activity and good stability in the hydrodesulfurization of 4,6-dimethyldibenzothiophene. Journal of Catalysis, 2016, 338, 210-221.	6.2	59
11	A high-performance all-iron non-aqueous redox flow battery. Journal of Power Sources, 2020, 445, 227331.	7.8	59
12	Quantifying multi-ionic conduction through doped ceria-carbonate composite electrolyte by a current-interruption technique and product analysis. International Journal of Hydrogen Energy, 2012, 37, 8556-8561.	7.1	55
13	Sr2Fe2â^'Mo O6â^' perovskite as an anode in a solid oxide fuel cell: Effect of the substitution ratio. Catalysis Today, 2016, 259, 417-422.	4.4	46
14	Oxide ion and proton conduction in doped ceria–carbonate composite materials. International Journal of Hydrogen Energy, 2013, 38, 1553-1559.	7.1	45
15	Improved activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum. Journal of Power Sources, 2016, 320, 251-256.	7.8	43
16	Validation of H+/O2â~' conduction in doped ceria–carbonate composite material using an electrochemical pumping method. International Journal of Hydrogen Energy, 2012, 37, 11378-11382.	7.1	42
17	A non-aqueous redox flow battery based on tris(1,10-phenanthroline) complexes of iron(II) and cobalt(II). Journal of Power Sources, 2015, 293, 778-783.	7.8	41
18	A benzophenone-based anolyte for high energy density all-organic redox flow battery. International Journal of Hydrogen Energy, 2017, 42, 17488-17494.	7.1	41

YICHENG ZHAO

#	Article	IF	CITATIONS
19	Enhanced oxygen reduction reaction activity of BaCe0.2Fe0.8O3-δ cathode for proton-conducting solid oxide fuel cells via Pr-doping. Journal of Power Sources, 2021, 495, 229776.	7.8	40
20	Enhancing the performance of an all-organic non-aqueous redox flow battery. Journal of Power Sources, 2019, 443, 227283.	7.8	38
21	A single layer solid oxide fuel cell composed of La2NiO4 and doped ceria-carbonate with H2 and methanol as fuels. International Journal of Hydrogen Energy, 2016, 41, 9059-9065.	7.1	34
22	Enhanced efficiency of hematite photoanode for water splitting with the doping of Ge. International Journal of Hydrogen Energy, 2018, 43, 12646-12652.	7.1	33
23	A SnO2-samarium doped ceria additional anode layer in a direct carbon fuel cell. Journal of Power Sources, 2016, 306, 387-393.	7.8	32
24	Carbon-resistant Ni1-xCox-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol. Catalysis Today, 2017, 298, 250-257.	4.4	32
25	Improve electrical conductivity of reduced La2Ni0.9Fe0.1O4+δ as the anode of a solid oxide fuel cell by carbon deposition. International Journal of Hydrogen Energy, 2015, 40, 9783-9789.	7.1	29
26	ZnO-promoted surface diffusion on NiO-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cell. Journal of Power Sources, 2019, 423, 290-296.	7.8	26
27	Ferrocene/anthraquinone based bi-redox molecule for symmetric nonaqueous redox flow battery. Journal of Power Sources, 2020, 480, 229132.	7.8	26
28	Improved electrochemical oxidation kinetics of La0.5Ba0.5FeO3-δ anode for solid oxide fuel cells with fluorine doping. Journal of Power Sources, 2022, 521, 230932.	7.8	26
29	Hydrothermally synthesized NiO-samarium doped ceria nano-composite as an anode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 22192-22200.	7.1	24
30	Sm0.5Ba0.5MnO3-δ anode for solid oxide fuel cells with hydrogen and methanol as fuels. Catalysis Today, 2017, 298, 33-39.	4.4	24
31	Molybdenum substitution at the B-site of lanthanum strontium titanate anodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 22294-22301.	7.1	22
32	Effect of Sn addition on improving the stability of Ni-Ce0.8Sm0.2O1.9 anode material for solid oxide fuel cells fed with dry CH4. Catalysis Today, 2019, 330, 209-216.	4.4	22
33	Enhanced activity and stability of Sr2FeMo0.65Ni0.35O6-δ anode for solid oxide fuel cells with Na doping. Journal of Power Sources, 2019, 425, 103-109.	7.8	21
34	A high-rate nonaqueous organic redox flow battery. Journal of Power Sources, 2021, 495, 229819.	7.8	21
35	Carbon dioxide permeation through ceramic-carbonate dual-phase membrane-effects of sulfur dioxide. Journal of Membrane Science, 2017, 540, 477-484.	8.2	19
36	Effects of surface modification on the reactivity of activated carbon in direct carbon fuel cells. Electrochimica Acta, 2018, 284, 630-638.	5.2	19

YICHENG ZHAO

#	Article	IF	CITATIONS
37	Improved Performance of Ni-Mo Based Anode for Direct Methanol Solid Oxide Fuel Cells with the Addition of Rare Earth Oxides. Journal of the Electrochemical Society, 2017, 164, F1142-F1148.	2.9	15
38	A LaNi0.9Co0.1O3 coated Ce0.8Sm0.2O1.9 composite anode for solid oxide fuel cells fed with methanol. Catalysis Today, 2019, 327, 220-225.	4.4	14
39	Effects of manganese oxides on the activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells with methanol as the fuel. Catalysis Today, 2019, 330, 222-227.	4.4	14
40	Improved activity of oxygen in Ni–Ce0.8Sm0.2O2-δ anode for solid oxide fuel cell with Pr doping. Journal of Power Sources, 2020, 451, 227809.	7.8	14
41	Highly selective metal-organic framework-based (MOF-5) separator for non-aqueous redox flow battery. Chemical Engineering Journal, 2022, 433, 133564.	12.7	14
42	Coking-resistant NbOx-Ni-Ce0.8Sm0.2O1.9 anode material for methanol-fueled solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 12748-12755.	7.1	13
43	A highly active Ni/Ce _{0.8} Sm _{0.2} O _{1.9} anode catalyst with a three-dimensionally ordered macroporous structure for solid oxide fuel cells. Journal of Materials Chemistry A, 2020, 8, 7792-7800.	10.3	13
44	A high performing perovskite cathode with in situ exsolved Co nanoparticles for H2O and CO2 solid oxide electrolysis cell. Catalysis Today, 2021, 364, 89-96.	4.4	13
45	Fabrication of MnCo2O4-YSZ Composite Cathodes for Solid Oxide Fuel Cells by Electrodeposition. Journal of the Electrochemical Society, 2016, 163, F863-F866.	2.9	10
46	A High-Performance Direct Carbon Fuel Cell with Reed Rod Biochar as Fuel. Journal of the Electrochemical Society, 2019, 166, F175-F179.	2.9	10
47	Bulk phase charge transfer in focus – And in sequential along with surface steps. Catalysis Today, 2021, 364, 2-6.	4.4	8
48	Solid oxide fuel cell with a spin-coated yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolyte. RSC Advances, 2022, 12, 13220-13227.	3.6	7
49	A systematic study of the co-solvent effect for an all-organic redox flow battery. RSC Advances, 2018, 8, 24422-24427.	3.6	6
50	Cu-Ce0.8Sm0.2O2-δ anode for electrochemical oxidation of methanol in solid oxide fuel cell: Improved activity by La and Nd doping. Solid State Ionics, 2021, 369, 115728.	2.7	6
51	Linear discharge model, power losses and overall efficiency of the solid oxide fuel cell with thin film samarium doped ceria electrolyte. Part II: Power losses and overall efficiency. International Journal of Hydrogen Energy, 2017, 42, 17522-17527.	7.1	3
52	Linear discharge model, power losses and overall efficiency of the solid oxide fuel cell with thin film samarium doped ceria electrolyte. Part I: Linear discharge model. International Journal of Hydrogen Energy, 2017, 42, 17528-17535.	7.1	1