
Thomas Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9283071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical bonding of PTCDA on Ag surfaces and the formation of interface states. Surface Science, 2006, 600, 1240-1251.	1.9	257
2	SPELEEM: Combining LEEM and Spectroscopic Imaging. Surface Review and Letters, 1998, 05, 1287-1296.	1.1	242
3	Fluorination of copper phthalocyanines: Electronic structure and interface properties. Journal of Applied Physics, 2003, 93, 9683-9692.	2.5	156
4	SMART: a planned ultrahigh-resolution spectromicroscope for BESSY II. Journal of Electron Spectroscopy and Related Phenomena, 1997, 84, 231-250.	1.7	149
5	Line shapes and satellites in high-resolution x-ray photoelectron spectra of large π-conjugated organic molecules. Journal of Chemical Physics, 2004, 121, 10260-10267.	3.0	117
6	XPEEM WITH ENERGY-FILTERING: ADVANTAGES AND FIRST RESULTS FROM THE SMART PROJECT. Surface Review and Letters, 2002, 09, 223-232.	1.1	94
7	SMART: An Aberration-Corrected XPEEM/LEEM with Energy Filter. Surface Review and Letters, 1998, 05, 1249-1256.	1.1	88
8	Growth mode and molecular orientation of phthalocyanine molecules on metal single crystal substrates: A NEXAFS and XPS study. Surface Science, 2006, 600, 1077-1084.	1.9	79
9	Double aberration correction in a low-energy electron microscope. Ultramicroscopy, 2010, 110, 1358-1361.	1.9	78
10	X-ray absorption spectra at the Ru and MnL2,3edges and long-range ferromagnetism inSrRu1â^'xMnxO3solid solutions(0<~x<~0.5). Physical Review B, 2002, 66, .	3.2	75
11	Energy calibration and intensity normalization in high-resolution NEXAFS spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2003, 129, 1-8.	1.7	70
12	Influence of substrate morphology on organic layer growth: PTCDA on Ag(111). Chemical Physics, 2006, 325, 178-184.	1.9	70
13	Dissociation and oxidation of methanol on Cu(). Surface Science, 2002, 507-510, 845-850.	1.9	67
14	Interconversion of α-Fe ₂ O ₃ and Fe ₃ O ₄ Thin Films: Mechanisms, Morphology, and Evidence for Unexpected Substrate Participation. Journal of Physical Chemistry C, 2014, 118, 29068-29076.	3.1	66
15	First experimental proof for aberration correction in XPEEM: Resolution, transmission enhancement, and limitation by space charge effects. Ultramicroscopy, 2013, 126, 23-32.	1.9	59
16	High-Resolution Photoemission Study of Different NTCDA Monolayers on Ag(111):Â Bonding and Screening Influences on the Line Shapesâ€. Journal of Physical Chemistry B, 2004, 108, 14741-14748.	2.6	57
17	Spectromicroscopy in a low energy electron microscope. Journal of Electron Spectroscopy and Related Phenomena, 1997, 84, 201-209.	1.7	50
18	A comparison of fine structures in high-resolution x-ray-absorption spectra of various condensed organic molecules. Journal of Chemical Physics, 2005, 123, 044509.	3.0	46

#	Article	IF	CITATIONS
19	Surface diffusion of Au on Si(111): A microscopic study. Physical Review B, 2000, 61, 16121-16128.	3.2	45
20	Interfactant-mediated quasi-Frank–van der Merwe growth of Pb on Si(111). Physical Review B, 2000, 62, 15815-15825.	3.2	44
21	Electron-Vibron Coupling in High-Resolution X-Ray Absorption Spectra of Organic Materials: NTCDA on Ag(111). Physical Review Letters, 2004, 93, 146406.	7.8	44
22	Unraveling the Dynamic Nanoscale Reducibility (Ce ⁴⁺ → Ce ³⁺) of CeO <i>_x</i> –Ru in Hydrogen Activation. Advanced Materials Interfaces, 2015, 2, 1500314.	3.7	42
23	Water Formation under Silica Thin Films: Realâ€Time Observation of a Chemical Reaction in a Physically Confined Space. Angewandte Chemie - International Edition, 2018, 57, 8749-8753.	13.8	42
24	Growth of H2O layers on an ultra-thin Al2O3 film: from monomeric species to ice. Surface Science, 2003, 543, 131-140.	1.9	40
25	Locally Resolved Coreâ€hole Screening, Molecular Orientation, and Morphology in Thin Films of Diindenoperylene Deposited on Au(111) Single Crystals. Advanced Materials, 2010, 22, 3740-3744.	21.0	40
26	Orientation of substituted phthalocyanines on polycrystalline gold: distinguishing between the first layers and thin films. Chemical Physics Letters, 2005, 403, 1-6.	2.6	38
27	Phase transformations in thin iron oxide films: Spectromicroscopic study of velocity and shape of the reaction fronts. Surface Science, 2016, 648, 177-187.	1.9	38
28	Growth and melting of a Pb monolayer on Cu(111). Surface Science, 1997, 376, 123-132.	1.9	35
29	Nucleation in Organic Thin Film Growth: Perylene on Al2O3/Ni3Al(111). Journal of Physical Chemistry C, 2009, 113, 10990-10996.	3.1	32
30	Spatial Variation of Au Coverage as the Driving Force for Nanoscopic Pattern Formation. Physical Review Letters, 2001, 86, 5088-5091.	7.8	31
31	Core-level photoelectron spectroscopy from individual heteroepitaxial nanocrystals on GaAs(001). Physical Review B, 2001, 63, .	3.2	29
32	Tetra-t-butyl magnesium phthalocyanine on gold: Electronic structure and molecular orientation. Journal of Chemical Physics, 2005, 122, 064710.	3.0	29
33	Innovative Measurement Techniques in Surface Science. ChemPhysChem, 2011, 12, 79-87.	2.1	28
34	Exceptional Dewetting of Organic Semiconductor Films: The Case of Dinaphthothienothiophene (DNTT) at Dielectric Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 8384-8392.	8.0	28
35	Highly ordered phthalocyanine thin films on a technically relevant polymer substrate. Journal of Applied Physics, 2004, 96, 4009-4011.	2.5	26
36	Silicate-free growth of high-quality ultrathin cerium oxide films on Si(111). Physical Review B, 2011, 84,	3.2	25

#	Article	IF	CITATIONS
37	Giant Faceting of Vicinal Si(001) Induced by Au Adsorption. Surface Review and Letters, 1998, 05, 1167-1178.	1.1	24
38	Au-induced giant faceting of vicinal Si(001). Surface Science, 1999, 433-435, 475-480.	1.9	24
39	High-resolution inner-shell excitation spectroscopy of H2-phthalocyanine. Journal of Chemical Physics, 2006, 125, 014705.	3.0	24
40	In situ imaging of structural changes in a chemical wave with low-energy electron microscopy: the system Rh(110)/NO+H2. Chemical Physics Letters, 2000, 318, 549-554.	2.6	23
41	Adsorption induced giant faceting of vicinal Si(001). Thin Solid Films, 1998, 336, 16-21.	1.8	22
42	Orientation and electronic properties of pentacene molecules on SiO2 and GeS(0001) studied using x-ray absorption spectroscopy. Journal of Applied Physics, 2004, 96, 5596-5600.	2.5	22
43	Ultrathin, epitaxial cerium dioxide on silicon. Applied Physics Letters, 2014, 104, .	3.3	22
44	Insights into Reaction Kinetics in Confined Space: Real Time Observation of Water Formation under a Silica Cover. Journal of the American Chemical Society, 2021, 143, 8780-8790.	13.7	22
45	Direct observation of epitaxial organic film growth: temperature-dependent growth mechanisms and metastability. Physical Chemistry Chemical Physics, 2015, 17, 29150-29160.	2.8	21
46	Ultrathin silver films on Ni(111). Physical Review B, 2010, 82, .	3.2	20
47	Preparation of silica films on Ru(0001): A LEEM/PEEM study. Surface Science, 2016, 643, 45-51.	1.9	19
48	The EIGER detector for low-energy electron microscopy and photoemission electron microscopy. Journal of Synchrotron Radiation, 2017, 24, 963-974.	2.4	17
49	A Silica Bilayer Supported on Ru(0001): Following the Crystallineâ€to Vitreous Transformation in Real Time with Spectroâ€microscopy. Angewandte Chemie - International Edition, 2020, 59, 10587-10593.	13.8	15
50	<title>Microfocusing VLS-grating-based beamline for advanced microscopy</title> . , 1999, 3767, 271.		14
51	An energy-dispersive VUV beamline for NEXAFS and other CFS/CIS studies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575, 470-475.	1.6	14
52	Atomic structure of the nonâ€polar GaN(\$ ar 2 \$110) surface by crossâ€sectional scanning tunneling microscopy. Physica Status Solidi - Rapid Research Letters, 2009, 3, 91-93.	2.4	14
53	A Two-Dimensional â€~Zigzag' Silica Polymorph on a Metal Support. Journal of the American Chemical Society, 2018, 140, 6164-6168.	13.7	14
54	Chapter model systems in heterogeneous catalysis at the atomic level: a personal view. Science China Chemistry, 2020, 63, 426-447.	8.2	14

#	Article	IF	CITATIONS
55	Optical layout of a beamline for photoemission microscopy. Journal of Synchrotron Radiation, 1999, 6, 957-963.	2.4	13
56	Anharmonicity of the core-excited state potential of an organic molecule from NEXAFS vibronic fine structure. Chemical Physics Letters, 2004, 392, 297-302.	2.6	13
57	LEEM and PEEM as Probing Tools to Address Questions in Catalysis. Catalysis Letters, 2017, 147, 2487-2497.	2.6	13
58	Formation and Evolution of Ultrathin Silica Polymorphs on Ru(0001) Studied with Combined <i>in Situ</i> , Real-Time Methods. Journal of Physical Chemistry C, 2019, 123, 8228-8243.	3.1	13
59	Growth and Atomicâ€Scale Characterization of Ultrathin Silica and Germania Films: The Crucial Role of the Metal Support. Chemistry - A European Journal, 2021, 27, 1870-1885.	3.3	13
60	Plasma-assisted oxidation of Cu(100) and Cu(111). Chemical Science, 2021, 12, 14241-14253.	7.4	13
61	Nanospectroscopy at Elettra. Synchrotron Radiation News, 1999, 12, 25-29.	0.8	12
62	Energy level alignment at zinc blende Cd(Mn)Se/ZnTe/InAs(100) interfaces. Applied Physics Letters, 2002, 81, 3813-3815.	3.3	12
63	Local Structure of Amorphous Ice as Revealed by O K-Edge EXAFS. ChemPhysChem, 2004, 5, 509-514.	2.1	12
64	Interaction of water with oxide thin film model systems. Journal of Materials Research, 2019, 34, 360-378.	2.6	12
65	Island shapes and aggregation steered by the geometry of the substrate lattice. Chemical Communications, 2012, 48, 6957.	4.1	11
66	Correlation Between Substrate Morphology and the Initial Stages of Epitaxial Organic Growth: PTCDA/Ag(111). Journal of Physical Chemistry C, 2016, 120, 19271-19279.	3.1	11
67	Mechanism and Kinetics of Hematite Crystallization in Air: Linking Bulk and Surface Models via Mesoporous Films with Defined Nanostructure. Chemistry of Materials, 2017, 29, 1724-1734.	6.7	11
68	Spatially Resolved Insight into the Chemical and Electronic Structure of Solutionâ€Processed Perovskites—Why to (Not) Worry about Pinholes. Advanced Materials Interfaces, 2018, 5, 1701420.	3.7	11
69	Initial stage of silicon nitride nucleation on Si(111) by rf plasma-assisted growth. E-Journal of Surface Science and Nanotechnology, 2006, 4, 84-89.	0.4	10
70	N-plasma assisted MBE grown GaN films on Si(111). Physica Status Solidi (B): Basic Research, 2006, 243, 1416-1420.	1.5	10
71	Local Au coverage as driving force for Au induced faceting of vicinal Si(001): a LEEM and XPEEM study. Surface Science, 2001, 480, 103-108.	1.9	9
72	Influence of interfactants on thin metal film growth. Surface Science, 2001, 480, 137-144.	1.9	9

#	Article	IF	CITATIONS
73	Nanoscale patterning, macroscopic reconstruction, and enhanced surface stress by organic adsorption on vicinal surfaces. New Journal of Physics, 2017, 19, 013019.	2.9	9
74	Formation of a 2D Meta-stable Oxide by Differential Oxidation of AgCu Alloys. ACS Applied Materials & amp; Interfaces, 2020, 12, 23595-23605.	8.0	9
75	The morphology of VO2/TiO2(001): terraces, facets, and cracks. Scientific Reports, 2020, 10, 22374.	3.3	9
76	Influence of As passivation on the electronic level alignment at BeTe/Si(111) interfaces. Physical Review B, 2003, 67, .	3.2	8
77	Orientation of Differently Substituted Phthalocyanines: First Layers and Thin Films. Molecular Crystals and Liquid Crystals, 2006, 455, 241-249.	0.9	7
78	<i>In Situ</i> Patterning of Ultrasharp Dopant Profiles in Silicon. ACS Nano, 2017, 11, 1683-1688.	14.6	7
79	Lateral inhomogeneities in engineered Schottky barriers. Journal of Crystal Growth, 1999, 201-202, 795-799.	1.5	6
80	XPEEM Study of Liquid Au-Si Droplets on Si(111) near to the Eutectic Point. Defect and Diffusion Forum, 2000, 183-185, 181-188.	0.4	6
81	Determination of diffusion energies on face-centred cubic (111) surfaces from diffraction experiments: a Monte Carlo study. Surface Science, 2000, 454-456, 566-570.	1.9	6
82	Valence band alignment and work function of heteroepitaxial nanocrystals on GaAs(001). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 2057.	1.6	6
83	Wasserbildung unter dünnen Silikaâ€Filmen: Echtzeitbeobachtung einer chemischen Reaktion in einem physikalisch eingegrenzten Raum. Angewandte Chemie, 2018, 130, 8885-8889.	2.0	6
84	Low-Temperature Growth of Graphene on a Semiconductor. Journal of Physical Chemistry C, 2021, 125, 4243-4252.	3.1	6
85	Preliminary Spectromicroscopic Measurements of Self-Organized InAs Nanocrystals by SPELEEM. Japanese Journal of Applied Physics, 1999, 38, 556.	1.5	6
86	Recent Advances in LEEM/PEEM for Structural and Chemical Analysis. , 1997, , 75-91.		5
87	Microstructural and compositional analyses of GaNâ€based nanostructures. Physica Status Solidi (B): Basic Research, 2011, 248, 1822-1836.	1.5	4
88	Symmetry-Induced Structuring of Ultrathin FeO and Fe3O4 Films on Pt(111) and Ru(0001). Nanomaterials, 2018, 8, 719.	4.1	4
89	A Silica Bilayer Supported on Ru(0001): Following the Crystallineâ€ŧo Vitreous Transformation in Real Time with Spectroâ€microscopy. Angewandte Chemie, 2020, 132, 10674-10680.	2.0	4
90	Impact of Nanomorphology on Surface Doping of Organic Semiconductors: The Pentacene–C60F48 Interface. ACS Applied Materials & Interfaces, 2020, 12, 25444-25452.	8.0	4

#	Article	IF	CITATIONS
91	Multi-Method High-Resolution Surface Analysis with Slow Electrons. Springer Series in Materials Science, 2003, , 363-390.	0.6	4
92	Influence of Substrate Bonding and Surface Morphology on Dynamic Organic Layer Growth: Perylenetetracarboxylic Dianhydride on Au(111). Langmuir, 2018, 34, 5444-5453.	3.5	3
93	Ostwald Ripening in an Oxideâ€onâ€Metal System. Advanced Materials Interfaces, 0, , 2200222.	3.7	3
94	Epitaxial, well-ordered ceria/lanthana high- <i>k</i> gate dielectrics on silicon. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	2
95	Complex Monolayer Growth Dynamics of a Highly Symmetric Molecule: NTCDA on Ag(111). Journal of Physical Chemistry C, 2019, 123, 8244-8255.	3.1	2
96	Growth and formation of InGaN and GaN nano-structures studied by STM. E-Journal of Surface Science and Nanotechnology, 2006, 4, 90-95.	0.4	1
97	Structural investigations of GaN films with X-ray standing waves. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1729-1732.	0.8	1
98	Hydrogen: Unraveling the Dynamic Nanoscale Reducibility (Ce4+→ Ce3+) of CeOx-Ru in Hydrogen Activation (Adv. Mater. Interfaces 18/2015). Advanced Materials Interfaces, 2015, 2, n/a-n/a.	3.7	1
99	Growth of Epitaxial 3,4,9,10-Perylene Tetracarboxylic Dianhydride on Bi-Terminated Silicon. Journal of Physical Chemistry C, 2019, 123, 7097-7109.	3.1	1
100	Coupling of morphological instability and kinetic instability: Chemical waves in hydrogen oxidation on a bimetallic Ni/Rh(111) surface. Physical Review Materials, 2021, 5, .	2.4	1
101	Thin Oxide Films as Model Systems for Heterogeneous Catalysts. Springer Handbooks, 2020, , 267-328.	0.6	1
102	CoPt3 nanoparticles adsorbed on SiO2: a GISAXS and SEM study. Materials Research Society Symposia Proceedings, 2004, 840, Q6.10.1.	0.1	0
103	PHOTON STIMULATED DESORPTION. Series on Synchrotron Radiation Techniques and Applications, 2013, , 405-415.	0.2	Ο
104	Frontispiece: Growth and Atomicâ€Scale Characterization of Ultrathin Silica and Germania Films: The Crucial Role of the Metal Support. Chemistry - A European Journal, 2021, 27, .	3.3	0
105	A Simplified Method for Patterning Graphene on Dielectric Layers. ACS Applied Materials & Interfaces, 2021, 13, 37510-37516.	8.0	0
106	Surface Morphology and Island Shape of MOVPE Grown InGaN Nano-Island Ensembles Studied by STM. Materials Research Society Symposia Proceedings, 2005, 892, 759.	0.1	0
107	Concept and Design of the SMART Spectromicroscope at BESSY II. , 1998, , 271-282.		0
108	Cathode Lens Spectromicroscopy with a Low-Energy Electron Microscope. , 1998, , 241-250.		0

7