Ya-Huei Cathy Chin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9282506/publications.pdf

Version: 2024-02-01

25 papers 1,016 citations

567281 15 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

1476 citing authors

#	Article	IF	CITATIONS
1	Active site structure and methane oxidation reactivity of bimetallic Pd and Pt nanoparticles. Applied Catalysis A: General, 2022, 629, 118290.	4.3	12
2	Catalytic pathways and mechanistic consequences of water during vapor phase hydrogenation of butanal on Ru/SiO2. Journal of Catalysis, 2021, 394, 429-443.	6.2	12
3	Mechanistic Similarities and Differences for Hydrogenation of Aromatic Heterocycles and Aliphatic Carbonyls on Sulfided Ru Nanoparticles. ACS Catalysis, 2021, 11, 12585-12608.	11.2	3
4	Catalytic Effects of Chemisorbed Sulfur on Pyridine and Cyclohexene Hydrogenation on Pd and Pt Clusters. ACS Catalysis, 2021, 11, 1684-1705.	11.2	14
5	The Role of Protons and Hydrides in the Catalytic Hydrogenolysis of Guaiacol at the Ruthenium Nanoparticle–Water Interface. ACS Catalysis, 2020, 10, 12310-12332.	11.2	29
6	Generalized Mechanistic Framework for Ethane Dehydrogenation and Oxidative Dehydrogenation on Molybdenum Oxide Catalysts. ACS Catalysis, 2020, 10, 6952-6968.	11.2	53
7	Mechanistic Role of the Proton–Hydride Pair in Heteroarene Catalytic Hydrogenation. ACS Catalysis, 2019, 9, 9418-9437.	11.2	16
8	Kinetic Significance of Proton–Electron Transfer during Condensed Phase Reduction of Carbonyls on Transition Metal Clusters. ACS Catalysis, 2019, 9, 1763-1778.	11.2	45
9	Anionic Single-Atom Catalysts for CO Oxidation: Support-Independent Activity at Low Temperatures. ACS Catalysis, 2019, 9, 1595-1604.	11.2	54
10	Chemical and Structural Dynamics of Nanostructures in Bimetallic Pt–Pd Catalysts, Their Inhomogeneity, and Their Roles in Methane Oxidation. ACS Catalysis, 2019, 9, 5445-5461.	11.2	46
11	Mechanistic details of C O bond activation in and H-addition to guaiacol at water-Ru cluster interfaces. Journal of Catalysis, 2019, 370, 186-199.	6.2	19
12	Cascade Reactions in Tunable Lamellar Micro―and Mesopores for C=C Bond Coupling and Hydrocarbon Synthesis. Angewandte Chemie, 2018, 130, 13068-13072.	2.0	8
13	Influence of Carbon and Oxygen Chemical Potentials on the Hydrogen Donor Identity during Methanation on Ni, Co, and Niâ€Co Clusters. ChemCatChem, 2018, 11, 1244.	3.7	3
14	Catalytic Consequences of Reactive Intermediates during CO Oxidation on Ag Clusters. ACS Catalysis, 2018, 8, 11987-11998.	11.2	7
15	Innenrýcktitelbild: Cascade Reactions in Tunable Lamellar Micro- and Mesopores for C=C Bond Coupling and Hydrocarbon Synthesis (Angew. Chem. 39/2018). Angewandte Chemie, 2018, 130, 13159-13159.	2.0	O
16	Cascade Reactions in Tunable Lamellar Micro―and Mesopores for C=C Bond Coupling and Hydrocarbon Synthesis. Angewandte Chemie - International Edition, 2018, 57, 12886-12890.	13.8	12
17	Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane Activation. Journal of the American Chemical Society, 2017, 139, 6928-6945.	13.7	104
18	Butanal Condensation Chemistry Catalyzed by Brønsted Acid Sites on Polyoxometalate Clusters. ChemCatChem, 2017, 9, 287-299.	3.7	36

#	Article	IF	CITATION
19	Catalytic Pathways and Kinetic Requirements for Alkanal Deoxygenation on Solid Tungstosilicic Acid Clusters. ACS Catalysis, 2016, 6, 6634-6650.	11.2	8
20	Mechanistic insights on C O and C C bond activation and hydrogen insertion during acetic acid hydrogenation catalyzed by ruthenium clusters in aqueous medium. Journal of Catalysis, 2016, 340, 107-121.	6.2	40
21	Mechanism of intra- and inter-molecular CC bond formation of propanal on Brønsted acid sites contained within MFI zeolites. Journal of Catalysis, 2014, 311, 244-256.	6.2	20
22	Catalytic consequences of the identity and coverages of reactive intermediates during methanol partial oxidation on Pt clusters. Journal of Catalysis, 2014, 313, 55-69.	6.2	17
23	Catalytic Consequences of the Thermodynamic Activities at Metal Cluster Surfaces and Their Periodic Reactivity Trend for Methanol Oxidation. Angewandte Chemie - International Edition, 2014, 53, 12148-12152.	13.8	15
24	Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH ₄ Reactions on Pd Catalysts. Journal of the American Chemical Society, 2013, 135, 15425-15442.	13.7	256
25	Reactivity of Chemisorbed Oxygen Atoms and Their Catalytic Consequences during CH ₄ –O ₂ Catalysis on Supported Pt Clusters. Journal of the American Chemical Society, 2011, 133, 15958-15978.	13.7	184