Michael E Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9282168/publications.pdf

Version: 2024-02-01

66343 106344 5,558 162 42 65 citations h-index g-index papers 188 188 188 4243 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Aldosterone and dexamethasone activate African lungfish mineralocorticoid receptor: Increased activation after removal of the amino-terminal domain. Journal of Steroid Biochemistry and Molecular Biology, 2022, 215, 106024.	2.5	11
2	Divergent evolution of progesterone and mineralocorticoid receptors in terrestrial vertebrates and fish influences endocrine disruption. Biochemical Pharmacology, 2022, 198, 114951.	4.4	7
3	Regulation by Progestins, Corticosteroids, and RU486 of Transcriptional Activation of Elephant Shark and Human Progesterone Receptors: An Evolutionary Perspective. ACS Pharmacology and Translational Science, 2022, 5, 52-61.	4.9	2
4	N-terminal domain regulates steroid activation of elephant shark glucocorticoid and mineralocorticoid receptors. Journal of Steroid Biochemistry and Molecular Biology, 2021, 210, 105845.	2.5	12
5	1α-Hydroxycorticosterone. , 2021, , 943-945.		0
6	Progesterone: An enigmatic ligand for the mineralocorticoid receptor. Biochemical Pharmacology, 2020, 177, 113976.	4.4	34
7	Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. International Journal of Molecular Sciences, 2020, 21, 1791.	4.1	44
8	Steroid receptors and vertebrate evolution. Molecular and Cellular Endocrinology, 2019, 496, 110526.	3.2	60
9	Evolution of the Mineralocorticoid Receptor. Vitamins and Hormones, 2019, 109, 17-36.	1.7	13
10	Transcriptional activation of elephant shark mineralocorticoid receptor by corticosteroids, progesterone, and spironolactone. Science Signaling, 2019, 12, .	3.6	30
11	Progesterone activation of zebrafish mineralocorticoid receptor may influence growth of some transplanted tumors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2908-E2909.	7.1	16
12	Evolution of human, chicken, alligator, frog, and zebrafish mineralocorticoid receptors: Allosteric influence on steroid specificity. Science Signaling, 2018, 11 , .	3.6	40
13	The promiscuous estrogen receptor: Evolution of physiological estrogens and response to phytochemicals and endocrine disruptors. Journal of Steroid Biochemistry and Molecular Biology, 2018, 184, 29-37.	2.5	51
14	30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Evolution of the mineralocorticoid receptor: sequence, structure and function. Journal of Endocrinology, 2017, 234, T1-T16.	2.6	79
15	Corticosteroid and progesterone transactivation of mineralocorticoid receptors from Amur sturgeon and tropical gar. Biochemical Journal, 2016, 473, 3655-3665.	3.7	30
16	A second estrogen receptor from Japanese lamprey (Lethenteron japonicum) does not have activities for estrogen binding and transcription. General and Comparative Endocrinology, 2016, 236, 105-114.	1.8	9
17	Evolution of corticosteroid specificity for human, chicken, alligator and frog glucocorticoid receptors. Steroids, 2016, 113, 38-45.	1.8	14
18	Role of Pro-637 and Gln-642 in human glucocorticoid receptors and Ser-843 and Leu-848 in mineralocorticoid receptors in their differential responses to cortisol and aldosterone. Journal of Steroid Biochemistry and Molecular Biology, 2016, 159, 31-40.	2.5	19

#	Article	IF	Citations
19	Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage. Molecular Biology and Evolution, 2016, 33, 228-244.	8.9	41
20	Epithelial Sodium Transport and Its Control by Aldosterone: The Story of Our Internal Environment Revisited. Physiological Reviews, 2015, 95, 297-340.	28.8	217
21	Detection and functional portrayal of a novel class of dihydrotestosterone derived selective progesterone receptor modulators (SPRM). Journal of Steroid Biochemistry and Molecular Biology, 2015, 147, 111-123.	2.5	4
22	Allosteric role of the amino-terminal A/B domain on corticosteroid transactivation of gar and human glucocorticoid receptors. Journal of Steroid Biochemistry and Molecular Biology, 2015, 154, 112-119.	2.5	23
23	Origin of the response to adrenal and sex steroids: Roles of promiscuity and co-evolution of enzymes and steroid receptors. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 12-24.	2.5	87
24	Expanding the structural footprint of xenoestrogens. Endocrine Disruptors (Austin, Tex), 2014, 2, e967138.	1.1	11
25	Transcriptional analysis of endocrine disruption using zebrafish and massively parallel sequencing. Journal of Molecular Endocrinology, 2014, 52, R241-R256.	2.5	38
26	Application of a targeted endocrine q-PCR panel to monitor the effects of pollution in southern California flatfish. Endocrine Disruptors (Austin, Tex), 2014, 2, e969598.	1.1	8
27	The microbiome as a target for endocrine disruptors: Novel chemicals may disrupt androgen and microbiome-mediated autoimmunity. Endocrine Disruptors (Austin, Tex), 2014, 2, e964539.	1.1	2
28	Biological responses of marine flatfish exposed to municipal wastewater effluent. Environmental Toxicology and Chemistry, 2014, 33, 583-591.	4.3	5
29	Structural and evolutionary analysis of the co-activator binding domain in vertebrate progesterone receptors. Journal of Steroid Biochemistry and Molecular Biology, 2014, 141, 7-15.	2.5	5
30	3D models of human ERα and ERβ complexed with coumestrol. Steroids, 2014, 80, 37-43.	1.8	26
31	Fluorescent Ligand for Human Progesterone Receptor Imaging in Live Cells. Bioconjugate Chemistry, 2013, 24, 766-771.	3.6	15
32	Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 57-70.	2.5	108
33	What are the physiological estrogens?. Steroids, 2013, 78, 337-340.	1.8	45
34	Genomic and phenotypic response of hornyhead turbot exposed to municipal wastewater effluents. Aquatic Toxicology, 2013, 140-141, 174-184.	4.0	17
35	Cysteine-10 on $17 < i > \hat{l}^2 < i> $ -Hydroxysteroid Dehydrogenase 1 Has Stabilizing Interactions in the Cofactor Binding Region and Renders Sensitivity to Sulfhydryl Modifying Chemicals. International Journal of Cell Biology, 2013, 2013, 1-8.	2.5	2
36	Molecular Analysis of Endocrine Disruption in Hornyhead Turbot at Wastewater Outfalls in Southern California Using a Second Generation Multi-Species Microarray. PLoS ONE, 2013, 8, e75553.	2.5	27

#	Article	IF	CITATIONS
37	Evaluation of reproductive endocrine status in hornyhead turbot sampled from Southern California's urbanized coastal environments. Environmental Toxicology and Chemistry, 2012, 31, 2689-2700.	4.3	6
38	Evolutionary analysis of the segment from helix 3 through helix 5 in vertebrate progesterone receptors. Journal of Steroid Biochemistry and Molecular Biology, 2012, 132, 32-40.	2.5	7
39	3D models of human ERα and ERβ complexed with 5-androsten-3β,17β-diol. Steroids, 2012, 77, 1192-1197.	1.8	15
40	3D Models of MBP, a Biologically Active Metabolite of Bisphenol A, in Human Estrogen Receptor \hat{l}^2 . PLoS ONE, 2012, 7, e46078.	2.5	47
41	Biological effects of marine contaminated sediments on Sparus aurata juveniles. Aquatic Toxicology, 2011, 104, 308-316.	4.0	20
42	Origin and diversification of steroids: Co-evolution of enzymes and nuclear receptors. Molecular and Cellular Endocrinology, 2011, 334, 14-20.	3.2	88
43	3D models of lamprey progesterone receptor complexed with progesterone, 7α-hydroxy-progesterone and 15α-hydroxy-progesterone. Steroids, 2011, 76, 169-176.	1.8	10
44	3D models of lamprey corticoid receptor complexed with 11-deoxycortisol and deoxycorticosterone. Steroids, 2011, 76, 1451-1457.	1.8	10
45	Insights from the Structure of Estrogen Receptor into the Evolution of Estrogens: Implications for Endocrine Disruption. Nature Precedings, $2011, \ldots$	0.1	0
46	3D models of lamprey corticoid receptor complexed with 11 -deoxycortisol and deoxycorticosterone. Nature Precedings, 2011 , , .	0.1	0
47	Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by $11\hat{l}^2$ -hydroxysteroid dehydrogenase 1. Biochemical Journal, 2011, 436, 621-629.	3.7	45
48	Molecular staging of marine medaka: A model organism for marine ecotoxicity study. Marine Pollution Bulletin, 2011, 63, 309-317.	5.0	38
49	Insights from the structure of estrogen receptor into the evolution of estrogens: Implications for endocrine disruption. Biochemical Pharmacology, 2011, 82, 1-8.	4.4	38
50	A novel steroidal antiandrogen targeting wild type and mutant androgen receptors. Biochemical Pharmacology, 2011, 82, 1651-1662.	4.4	12
51	Evolution of 11βâ€hydroxysteroid dehydrogenaseâ€ŧype 1 and 11βâ€hydroxysteroid dehydrogenaseâ€ŧype 3. FE Letters, 2010, 584, 2279-2284.	EBS 2.8	26
52	Evolution of $11[\text{beta}]$ -Hydroxysteroid Dehydrogenase-Type 1 and $11[\text{beta}]$ -Hydroxysteroid Dehydrogenase-type 3. Nature Precedings, 2010, , .	0.1	0
53	11[beta]-hydroxysteroid dehydrogenase-type 2 evolved from an ancestral 17[beta]-hydroxysteroid dehydrogenase-type 2. Nature Precedings, 2010, , .	0.1	0
54	Origin and diversification of steroids: Co-evolution of enzymes and nuclear receptors. Nature Precedings, 2010, , .	0.1	0

#	Article	IF	CITATIONS
55	$11\hat{l}^2$ -Hydroxysteroid dehydrogenase-type 2 evolved from an ancestral $17\hat{l}^2$ -Hydroxysteroid dehydrogenase-type 2. Biochemical and Biophysical Research Communications, 2010, 399, 215-220.	2.1	18
56	3D Model of Lamprey Estrogen Receptor with Estradiol and 15î±-Hydroxy-Estradiol. PLoS ONE, 2009, 4, e6038.	2.5	14
57	3D model of amphioxus steroid receptor complexed with estradiol. Nature Precedings, 2009, , .	0.1	0
58	Independent elaboration of steroid hormone signaling pathways in Metazoans. Nature Precedings, 2009, , .	0.1	1
59	Independent elaboration of steroid hormone signaling pathways in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11913-11918.	7.1	163
60	Analysis of Endocrine Disruption in Southern California Coastal Fish Using an Aquatic Multispecies Microarray. Environmental Health Perspectives, 2009, 117, 223-230.	6.0	52
61	Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiological Genomics, 2009, 38, 116-124.	2.3	26
62	3D model of amphioxus steroid receptor complexed with estradiol. Biochemical and Biophysical Research Communications, 2009, 386, 516-520.	2.1	14
63	Hexose-6-phosphate dehydrogenase modulates the effect of inhibitors and alternative substrates of $11\hat{l}^2$ -hydroxysteroid dehydrogenase 1. Molecular and Cellular Endocrinology, 2009, 301, 117-122.	3.2	26
64	Variation of the genetic expression pattern after exposure to estradiol- $17\hat{l}^2$ and 4-nonylphenol in male zebrafish (Danio rerio). General and Comparative Endocrinology, 2008, 158, 138-144.	1.8	55
65	Activity versus Peroxisomal Targeting of PerCR. Structure, 2008, 16, 331-332.	3.3	1
66	Motif analysis of amphioxus, lamprey and invertebrate estrogen receptors: Toward a better understanding of estrogen receptor evolution. Biochemical and Biophysical Research Communications, 2008, 371, 724-728.	2.1	12
67	Trichoplax, the simplest known animal, contains an estrogen-related receptor but no estrogen receptor: Implications for estrogen receptor evolution. Biochemical and Biophysical Research Communications, 2008, 375, 623-627.	2.1	43
68	Motif analysis of amphioxus, lamprey and invertebrate estrogen receptors and amphioxus and human estrogen-related receptors: Towards a better understanding of estrogen receptor evolution. Nature Precedings, 2008, , .	0.1	0
69	Motif analysis of amphioxus, lamprey and invertebrate estrogen receptors and amphioxus and human estrogen-related receptors: Towards a better understanding of estrogen receptor evolution. Nature Precedings, 2008, , .	0.1	0
70	Trichoplax, the simplest known animal, contains an estrogen-related receptor: Implications for the evolution of vertebrate and invertebrate estrogen receptors. Nature Precedings, 2008, , .	0.1	0
71	Trichoplax, the simplest known animal, contains an estrogen-related receptor but no estrogen receptor: Implications for estrogen receptor evolution. Nature Precedings, 2008, , .	0.1	0
72	Dibutyltin Disrupts Glucocorticoid Receptor Function and Impairs Glucocorticoid-induced Suppression of Cytokine Production. Nature Precedings, 2008, , .	0.1	0

#	Article	IF	Citations
73	Hexose-6-phosphate dehydrogenase modulates the effect of inhibitors and alternative substrates of $11[beta]$ -hydroxysteroid dehydrogenase 1. Nature Precedings, 2008, , .	0.1	1
74	Dibutyltin Disrupts Glucocorticoid Receptor Function and Impairs Glucocorticoid-Induced Suppression of Cytokine Production. PLoS ONE, 2008, 3, e3545.	2.5	64
75	Amphioxus, a Primitive Chordate, Is on Steroids: Evidence for Sex Steroids and Steroidogenic Enzymes. Endocrinology, 2007, 148, 3551-3553.	2.8	18
76	Analysis of 3D models of octopus estrogen receptor with estradiol: Evidence for steric clashes that prevent estrogen binding. Biochemical and Biophysical Research Communications, 2007, 361, 782-788.	2.1	22
77	Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors. BMC Evolutionary Biology, 2007, 7, 24.	3.2	49
78	Hexose-6-phosphate Dehydrogenase Modulates $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1-Dependent Metabolism of 7-keto- and $7\hat{l}^2$ -hydroxy-neurosteroids. PLoS ONE, 2007, 2, e561.	2.5	38
79	Hypergravity squat as an alternative to classical squat and potential countermeasure to microgravity. FASEB Journal, 2007, 21, A952.	0.5	0
80	Differences in catalytic activity between rat testicular and ovarian carbonyl reductases are due to two amino acids. FEBS Letters, 2006, 580, 67-71.	2.8	5
81	The genetic response to Snowball Earth: role of HSP90 in the Cambrian explosion. Geobiology, 2006, 4, 11-14.	2.4	16
82	Rat $3\hat{l}$ ±-Hydroxysteroid Dehydrogenase: To Oxidize or Reduce, that Is the Question. Endocrinology, 2006, 147, 1589-1590.	2.8	2
83	Evolution of metamorphosis: role of environment on expression of mutant nuclear receptors and other signal-transduction proteins. Integrative and Comparative Biology, 2006, 46, 808-814.	2.0	10
84	Evolution of the thyroid hormone, retinoic acid, ecdysone and liver X receptors. Integrative and Comparative Biology, 2006, 46, 815-826.	2.0	15
85	Organotins Disrupt the 11β-Hydroxysteroid Dehydrogenase Type 2–Dependent Local Inactivation of Glucocorticoids. Environmental Health Perspectives, 2005, 113, 1600-1606.	6.0	71
86	Xenobiotics and the Evolution of Multicellular Animals: Emergence and Diversification of Ligand-Activated Transcription Factors. Integrative and Comparative Biology, 2005, 45, 172-178.	2.0	50
87	Dissecting the Axoneme Interactome. Molecular and Cellular Proteomics, 2005, 4, 914-923.	3.8	60
88	Evolutionary analysis of $11\hat{l}^2$ -hydroxysteroid dehydrogenase-type 1, -type 2, -type 3 and $17\hat{l}^2$ -hydroxysteroid dehydrogenase-type 2 in fish. FEBS Letters, 2004, 574, 167-170.	2.8	51
89	Co-evolution of steroidogenic and steroid-inactivating enzymes and adrenal and sex steroid receptors. Molecular and Cellular Endocrinology, 2004, 215, 55-62.	3.2	97
90	The 11-ketosteroid 11-ketodexamethasone is a glucocorticoid receptor agonist. Molecular and Cellular Endocrinology, 2004, 214, 27-37.	3.2	51

#	Article	IF	Citations
91	Steroid Receptors, Evolution of. , 2004, , 312-319.		1
92	Evolution of adrenal and sex steroid action in vertebrates: a ligand-based mechanism for complexity. BioEssays, 2003, 25, 396-400.	2.5	102
93	Inhibition of $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 2 by dithiocarbamates. Biochemical and Biophysical Research Communications, 2003, 308, 257-262.	2.1	88
94	Glutamate-115 renders specificity of human $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 2 for the cofactor NAD+. Molecular and Cellular Endocrinology, 2003, 201, 177-187.	3.2	29
95	Evolution of Glucocorticoid and Mineralocorticoid Responses: Go Fish. Endocrinology, 2003, 144, 4223-4225.	2.8	56
96	Recent insights into the origins of adrenal and sex steroid receptors. Journal of Molecular Endocrinology, 2002, 28, 149-152.	2.5	48
97	Albumin, steroid hormones and the origin of vertebrates. Journal of Endocrinology, 2002, 175, 121-127.	2.6	111
98	Evolution of $17\hat{1}^2$ -hydroxysteroid dehydrogenases and their role in androgen, estrogen and retinoid action. Molecular and Cellular Endocrinology, 2001, 171, 211-215.	3.2	98
99	Hydroxysteroid dehydrogenases: ancient and modern regulators of adrenal and sex steroid action. Molecular and Cellular Endocrinology, 2001, 175, 1-4.	3.2	21
100	Deletion of 12 carboxyl-terminal residues from pig $3\hat{l}\pm\hat{l}^2$, $20\hat{l}^2$ -hydroxysteroid dehydrogenase affects steroid metabolism. BBA - Proteins and Proteomics, 2001, 1550, 175-182.	2.1	4
101	Adrenal and sex steroid receptor evolution: environmental implications. Journal of Molecular Endocrinology, 2001, 26, 119-125.	2.5	58
102	Mutation of threonine-241 to proline eliminates autocatalytic modification of human carbonyl reductase. Biochemical Journal, 2000, 350, 89.	3.7	4
103	Mutation of threonine-241 to proline eliminates autocatalytic modification of human carbonyl reductase. Biochemical Journal, 2000, 350, 89-92.	3.7	9
104	TIP30, a cofactor for HIV-1 Tat-activated transcription, is homologous to short-chain dehydrogenases/reductases. Current Biology, 1999, 9, R471.	3.9	21
105	Evolution of mammalian $11^{\hat{1}^2}$ - and $17^{\hat{1}^2}$ -hydroxysteroid dehydrogenases-type 2 and retinol dehydrogenases from ancestors in Caenorhabditis elegans and evidence for horizontal transfer of a eukaryote dehydrogenase to E. coli. Journal of Steroid Biochemistry and Molecular Biology, 1998, 66, 355-363.	2.5	19
106	Albumin's role in steroid hormone action and the origins of vertebrates: is albumin an essential protein?. FEBS Letters, 1998, 439, 9-12.	2.8	45
107	Spinach CSP41, an mRNA-Binding Protein and Ribonuclease, Is Homologous to Nucleotide-Sugar Epimerases and Hydroxysteroid Dehydrogenases. Biochemical and Biophysical Research Communications, 1998, 248, 250-254.	2.1	37
108	Flavonoids as Hormones. Advances in Experimental Medicine and Biology, 1998, , 249-267.	1.6	25

#	Article	IF	CITATIONS
109	Characterization of Ke 6, a New $17\hat{l}^2$ -Hydroxysteroid Dehydrogenase, and Its Expression in Gonadal Tissues. Journal of Biological Chemistry, 1998, 273, 22664-22671.	3.4	95
110	Mutation of tyrosine-194 and lysine-198 in the catalytic site of pig $3\hat{l}\pm/\hat{l}^2$, $20\hat{l}^2$ -hydroxysteroid dehydrogenase. Biochemical Journal, 1998, 334, 553-557.	3.7	19
111	MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8462-8467.	7.1	227
112	Hidden Markov Model Analysis of Motifs in Steroid Dehydrogenases and Their Homologs. Biochemical and Biophysical Research Communications, 1997, 231, 760-766.	2.1	38
113	An artificial intelligence approach to motif discovery in protein sequences: Application to steroid dehydrogenases. Journal of Steroid Biochemistry and Molecular Biology, 1997, 62, 29-44.	2.5	66
114	PHYSIOLOGICAL "CONSTANTS―FOR PBPK MODELS FOR PREGNANCY. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1997, 52, 385-401.	2.3	31
115	Steroid receptor phylogeny and vertebrate origins. Molecular and Cellular Endocrinology, 1997, 135, 101-107.	3.2	106
116	Structures Important in NAD(P)(H) Specificity for Mammalian Retinol and 11-Cis-Retinol Dehydrogenases. Biochemical and Biophysical Research Communications, 1996, 226, 118-127.	2.1	12
117	Bacterial 3α-hydroxysteroid dehydrogenase is homologous to a fusion of bacterial ribosomal L10 and genes. Journal of Steroid Biochemistry and Molecular Biology, 1996, 59, 365-366.	2.5	3
118	Unusual evolution of 11?- and 17?-hydroxysteroid and retinol dehydrogenases. BioEssays, 1996, 18, 63-70.	2.5	56
119	Endocrine Activity of Plant-Derived Compounds: An Evolutionary Perspective. Experimental Biology and Medicine, 1995, 208, 131-138.	2.4	59
120	Structures Stabilizing the Dimer Interface on Human $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Types 1 and 2 and Human 15-Hydroxyprostaglandin Dehydrogenase and Their Homologs. Biochemical and Biophysical Research Communications, 1995, 217, 859-868.	2.1	23
121	Licorice-derived compounds inhibit linoleic acid (C:18:2ω6) desaturation in soybean chloroplasts. FEBS Letters, 1995, 368, 135-138.	2.8	8
122	Structures important in mammalian $11\hat{l}^2$ - and $17\hat{l}^2$ -hydroxysteroid dehydrogenases. Journal of Steroid Biochemistry and Molecular Biology, 1995, 55, 589-600.	2.5	22
123	Synthesis and biological activity of 28-homobrassinolide and analogues. Phytochemistry, 1994, 36, 585-589.	2.9	34
124	Adding a positive charge at residue 46 of Drosophila alcohol dehydrogenase increases cofactor specificity for NADP+. FEBS Letters, 1994, 356, 81-85.	2.8	26
125	Licorice and enzymes other than $11\hat{l}^2$ -hydroxysteroid dehydrogenase: An evolutionary perspective. Steroids, 1994, 59, 136-141.	1.8	56
126	Sequence analysis of steroid- and prostaglandin-metabolizing enzymes: Application to understanding catalysis. Steroids, 1994, 59, 248-258.	1.8	47

#	Article	IF	CITATIONS
127	Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana. Journal of Plant Growth Regulation, 1993, 12, 61-66.	5.1	99
128	Chicken Sterol Carrier Protein m2/Sterol Carrier Protein x: cDNA Cloning Reveals Evolutionary Conservation of Structure and Regulated Expression. Archives of Biochemistry and Biophysics, 1993, 304, 287-293.	3.0	37
129	Site-specific mutagenesis of Drosophila alcohol dehydrogenase: Evidence for involvement of tyrosine-152 and lysine-156 in catalysis. Biochemistry, 1993, 32, 3342-3346.	2.5	162
130	Inhibition of 3,5,3'-triiodothyronine binding to its receptor in rat liver by protease inhibitors and substrates. Molecular and Cellular Endocrinology, 1993, 93, 81-86.	3.2	11
131	Effect of Brassinolide on Gene Expression in Elongating Soybean Epicotyls. Plant Physiology, 1992, 100, 1377-1383.	4.8	100
132	Inhibition of Streptomyces hydrogenans 3α,20β-hydroxysteroid dehydrogenase by licorice-derived compounds and crystallization of an enzyme-cofactor-inhibitor complex. Journal of Steroid Biochemistry and Molecular Biology, 1992, 42, 849-853.	2.5	25
133	Similarities between legume–rhizobium communication and steroid-mediated intercellular communication in vertebrates. Canadian Journal of Microbiology, 1992, 38, 541-547.	1.7	18
134	Evolution of regulation of steroid-mediated intercellular communication in vertebrates: Insights from flavonoids, signals that mediate plant-rhizobia symbiosis. Journal of Steroid Biochemistry and Molecular Biology, 1992, 41, 301-308.	2.5	40
135	Expansion of the mammalian $3\hat{l}^2$ -hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis. FEBS Letters, 1992, 301, 89-93.	2.8	108
136	Sex hormoneâ€binding globulin, androgenâ€binding protein, and vitamin Kâ€dependent protein S are homologous to laminin A, merosin, and Drosophila crumbs protein. FASEB Journal, 1992, 6, 2477-2481.	0.5	98
137	Licorice, computer-based analyses of dehydrogenase sequences, and the regulation of steroid and prostaglandin action. Molecular and Cellular Endocrinology, 1991, 78, C99-C102.	3.2	30
138	Genealogy of regulation of human sex and adrenal function, prostaglandin action, snapdragon and petunia flower colors, antibiotics, and nitrogen fixation: functional diversity from two ancestral dehydrogenases. Steroids, 1991, 56, 354-360.	1.8	46
139	Evolution of Enzymatic regulation of prostaglandin action: Novel connections to regulation of human sex and adrenal function, antibiotic synthesis and nitrogen fixation. Prostaglandins, 1991, 42, 391-410.	1.2	19
140	Mammalian peripheral-type benzodiazepine receptor is homologous to CrtK protein of rhodobacter capsulatus, a photosynthetic bacterium. Cell, 1991, 65, 721-722.	28.9	39
141	A common ancestor for human placental 17βâ€hydroxysteroid dehydrogenase, Streptomyces coelicolor actIII protein, and Drosophila melanogaster alcohol dehydrogenase. FASEB Journal, 1990, 4, 222-226.	0.5	43
142	A common ancestor for Candida tropicalis and dehydrogenases that synthesize antibiotics and steroids. FASEB Journal, 1990, 4, 3028-3032.	0.5	20
143	A common ancestor for bovine lens fiber major intrinsic protein, soybean nodulin-26 protein, and E. coli glycerol facilitator. Cell, 1990, 60, 185-186.	28.9	105
144	Evolution of permease diversity and energy-coupling mechanisms with special reference to the bacterial phosphotransferase system. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1018, 248-251.	1.0	6

#	Article	IF	Citations
145	Similarity between tyrosylâ€ŧRNA synthetase and the estrogen receptor. FASEB Journal, 1989, 3, 2086-2088.	0.5	15
146	SEQUENCES OF INTEREST: Human Placental $17\hat{l}^2$ -Hydroxysteroid Dehydrogenase is Homologous to NodG Protein ofRhizobium meliloti. Molecular Endocrinology, 1989, 3, 881-884.	3.7	37
147	Evolution of estrogen binding in rat and mouse alpha-fetoprotein. BioEssays, 1989, 11, 112-114.	2.5	1
148	Location of enzymatic and DNA-binding domains on E. coli protease La. FEBS Letters, 1989, 244, 31-33.	2.8	3
149	Evidence that progesterone binding uteroglobin is similar to myosin alkali light chain. FEBS Letters, 1985, 189, 188-194.	2.8	3
150	Human tissue-type plasminogen activator is related to albumin and alpha-fetoprotein. FEBS Letters, 1985, 182, 47-52.	2.8	9
151	Amino acid sequence homology between the C3 chain of rat prostatic steroid binding protein and human alpha2-macroglobulin. Biochemical and Biophysical Research Communications, 1984, 122, 662-667.	2.1	3
152	Gossypol inhibits estrogen binding to rat /-fetoprotein. FEBS Letters, 1984, 175, 41-44.	2.8	13
153	Chick oviduct progesterone receptor binding of $15\hat{l}^2$,17-dihydroxyprogesterone and its analogues. Steroids, 1984, 43, 153-158.	1.8	2
154	Amino acid sequence homology between rat prostatic steroid binding protein and rabbit uteroglobin. Biochemical and Biophysical Research Communications, 1983, 114, 325-330.	2.1	26
155	Protease substrates inhibit binding of 3H-R5020 to the G-fragment in chick oviduct cytosol. Biochemical and Biophysical Research Communications, 1982, 108, 1067-1073.	2.1	14
156	Inhibition of estrogen binding to rat alpha-fetoprotein by tryptophan p-nitrophenyl esters. The Journal of Steroid Biochemistry, 1982, 16, 503-507.	1.1	13
157	Diethylpyrocarbonate inhibition of estrogen binding to rat alpha-fetoprotein: Evidence that one or more histidine residues regulate estrogen binding. Biochemical and Biophysical Research Communications, 1981, 98, 976-982.	2.1	10
158	The Characterization of the ?-Subunits of 7S Nerve Growth Factor. Journal of Neurochemistry, 1980, 34, 850-855.	3.9	24
159	Competitive inhibition of dexamethasone binding to the glucocorticoid receptor in HTC cells by tryptophan methyl ester. The Journal of Steroid Biochemistry, 1980, 13, 993-995.	1.1	19
160	Binding of the chymotrypsin substrate, tryptophan methyl ester, by rat α-fetoprotein. Biochimica Et Biophysica Acta - General Subjects, 1980, 632, 611-618.	2.4	13
161	Inhibition by protease inhibitors of binding of adrenal and sex steroid hormones. Journal of Supramolecular Structure, 1978, 9, 421-426.	2.3	35
162	Effect of protease inhibitors and substrates on deoxycorticosterone binding to its receptor in dog MDCK kidney cells. Nature, 1977, 269, 810-812.	27.8	44