Zahra Zakeri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9281929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ceramide from sphingomyelin hydrolysis induces neuronal differentiation, whereas de novo ceramide synthesis and sphingomyelin hydrolysis initiate apoptosis after NGF withdrawal in PC12 Cells. Cell Communication and Signaling, 2022, 20, 15.	6.5	7
2	Association of P2X7 receptor genetic polymorphisms and expression with rheumatoid arthritis susceptibility in a sample of the Iranian population: a case-control study. Clinical Rheumatology, 2021, 40, 3115-3126.	2.2	5
3	Assessment of Atg7 and LC3II/LC3, as The Markers of Autophagy, in Sperm of Infertile Men with Globozoospermia: A Case-Control Study. Cell Journal, 2021, 23, 70-74.	0.2	1
4	Microglial-induced apoptosis is potentially responsible for hyperalgesia variations during CFA-induced inflammation. Inflammopharmacology, 2020, 28, 475-485.	3.9	14
5	Higher sensitivity of female cells to ethanol: methylation of DNA lowers Cyp2e1, generating more ROS. Cell Communication and Signaling, 2020, 18, 111.	6.5	11
6	Atorvastatin restricts the ability of influenza virus to generate lipid droplets and severely suppresses the replication of the virus. FASEB Journal, 2019, 33, 9516-9525.	0.5	44
7	Reduced sperm telomere length in individuals with varicocele is associated with reduced genomic integrity. Scientific Reports, 2019, 9, 4336.	3.3	33
8	About canonical, non-canonical and immunogenic cell death: Basic mechanisms and translational applications: A meeting report of the International Cell Death Society. Biochemical Pharmacology, 2019, 162, 1-2.	4.4	2
9	Comparison of main molecular markers involved in autophagy and apoptosis pathways between spermatozoa of infertile men with varicocele and fertile individuals. Andrologia, 2019, 51, e13177.	2.1	18
10	Reduction of truncated Kit Expression in Men with Abnormal Semen Parameters, Globozoospermia and History of Low or Fertilization Failure. Cell Journal, 2019, 21, 314-321.	0.2	5
11	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
12	CEPO-Fc (An EPO Derivative) Protects Hippocampus Against Aβ-induced Memory Deterioration: A Behavioral and Molecular Study in a Rat Model of Aβ Toxicity. Neuroscience, 2018, 388, 405-417.	2.3	27
13	Effect of glucosamine on intraocular pressure: a randomized clinical trial. Eye, 2017, 31, 389-394.	2.1	8
14	The Induction of Apoptosis in A375 Malignant Melanoma Cells by <i>Sutherlandia frutescens</i> . Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-14.	1.2	12
15	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
16	Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death and Disease, 2016, 7, e2127-e2127.	6.3	103
17	What cell death does in development. International Journal of Developmental Biology, 2015, 59, 11-22.	0.6	18
18	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	11.2	811

ZAHRA ZAKERI

#	Article	IF	CITATIONS
19	Sexâ€dependent regulation of cytochrome P450 family members Cyp1a1, Cyp2e1, and Cyp7b1 by methylation of DNA. FASEB Journal, 2014, 28, 966-977.	0.5	47
20	mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection. Virology, 2014, 452-453, 175-190.	2.4	52
21	Regulation of cell survival and death during Flavivirus infections. World Journal of Biological Chemistry, 2014, 5, 93-105.	4.3	38
22	The variability of autophagy and cell death susceptibility. Autophagy, 2013, 9, 1270-1285.	9.1	126
23	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
24	Flavivirus NS4A-induced Autophagy Protects Cells against Death and Enhances Virus Replication. Journal of Biological Chemistry, 2011, 286, 22147-22159.	3.4	228
25	Targeting enteroviral 2A protease by a 16-mer synthetic peptide: Inhibition of 2Apro-induced apoptosis in a stable Tet-on HeLa cell line. Virology, 2010, 399, 39-45.	2.4	14
26	Sex of the cell dictates its response: differential gene expression and sensitivity to cell death inducing stress in male and female cells. FASEB Journal, 2009, 23, 1869-1879.	0.5	100
27	Cell Death: History and Future. Advances in Experimental Medicine and Biology, 2008, 615, 1-11.	1.6	55
28	Chapter Fifteen Detection of Autophagy in Cell Death. Methods in Enzymology, 2008, 442, 289-306.	1.0	21
29	p53, Apaf-1, caspase-3, and -9 are dispensable for Cdk5 activation during cell death. Cell Death and Differentiation, 2006, 13, 141-150.	11.2	22
30	Cell death in development: shaping the embryo. Histochemistry and Cell Biology, 2006, 126, 149-158.	1.7	110
31	Cell Death in Neuronal Development and Maintenance. , 2005, , 175-200.		1
32	The Recognition and Engulfment of Apoptotic Cells by Phagocytes. , 2005, , 311-337.		1
33	Cell Death inDictyostelium: Assessing A Genetic Approach. , 2005, , 59-77.		1
34	Cell Death in Plant Development and Defense. , 2005, , 99-121.		2
35	Programmed Cell Death inDrosophila Melanogaster. , 2005, , 79-97.		1
36	Cell Turnover: Intestine and Other Tissues. , 2005, , 201-240.		1

#	Article	IF	CITATIONS
37	Apoptosis in the Immune System. , 2005, , 143-174.		Ο
38	Regulation of Apoptosis by Extracellular Matrix during Postembryonic Development inXenopus Laevis. , 2005, , 123-141.		0
39	The Role of Apoptosis in Myocardial Infarction and Heart Failure. , 2005, , 483-519.		1
40	The Use of Proteomics to Identify and Characterize Cell Death Proteins. , 2005, , 403-434.		0
41	Cell Death in Cancer and Cancer Therapy. , 2005, , 461-481.		Ο
42	Cell Death: Shaping an Embryo. , 2005, , 25-58.		1
43	Caspase-Independent and Autophagic Programmed Cell Death. , 2005, , 275-309.		3
44	Survival Factors. , 2005, , 255-273.		0
45	Cell Death, Aging Phenotypes, and Models of Premature Aging. , 2005, , 241-253.		1
46	Cell Cycle Genes: pRb and p53. , 2005, , 339-379.		0
47	Mitochondria and Oxidation in the Regulation of Cell Death. , 2005, , 381-401.		0
48	Cell Death in Viral Infections. , 2005, , 435-460.		1
49	A generalized caspase inhibitor disrupts early mammalian development. International Journal of Developmental Biology, 2005, 49, 43-51.	0.6	24
50	Caspase-independent cell death?. Oncogene, 2004, 23, 2766-2773.	5.9	183
51	Apoptosis, autophagy, and more. International Journal of Biochemistry and Cell Biology, 2004, 36, 2405-2419.	2.8	608
52	Cell death during development. Journal of Immunological Methods, 2002, 265, 3-20.	1.4	86
53	Caspase-independent cell deaths. Current Opinion in Cell Biology, 2002, 14, 727-733.	5.4	206
54	A small RNA in testis and brain: implications for male germ cell development. Journal of Cell Science, 2002, 115, 1243-1250.	2.0	24

ZAHRA ZAKERI

#	Article	IF	CITATIONS
55	Trypanosoma bruceiinfection induces apoptosis and up-regulates neuroleukin expression in the cerebellum. Annals of Tropical Medicine and Parasitology, 2001, 95, 797-810.	1.6	10
56	Programmed cell death and apoptosis: origins of the theory. Nature Reviews Molecular Cell Biology, 2001, 2, 545-550.	37.0	297
57	Gender differences in cellular response. Lupus, 1999, 8, 375-379.	1.6	11
58	Coenzyme Q ₁₀ Can in Some Circumstances Block Apoptosis, and This Effect Is Mediated through Mitochondria. Annals of the New York Academy of Sciences, 1999, 887, 31-47.	3.8	35
59	Relationships of apoptotic signaling mediated by ceramide and TNF-α in U937 cells. Cell Death and Differentiation, 1999, 6, 115-123.	11.2	24
60	Rearrangement of the tubulin and actin cytoskeleton during programmed cell death in Drosophila salivary glands. Cell Death and Differentiation, 1997, 4, 140-149.	11.2	48
61	DATELINE: New York - The Cell Death Society's â€~Mechanisms of Cell Death'. Cell Death and Differentiation, 1997, 4, 341-342.	11.2	0
62	Expression of Cdk5, p35, and Cdk5-associated kinase activity in the developing rat lens. Genesis, 1997, 20, 267-275.	2.1	66
63	Protein synthesis, DNA degradation, and morphological changes during programmed cell death in labial glands ofManduca sexta. , 1997, 21, 249-257.		31
64	Association of cyclin-dependent kinase 5 and its activator p35 with apoptotic cell death. , 1997, 21, 258-267.		55
65	Rescue of the limb deformity in Hammertoe mutant mice by retinoic acid-induced cell death. , 1997, 208, 466-481.		38
66	Stereospecific Induction of Apoptosis in U937 Cells by N-Octanoyl-Sphingosine Stereoisomers and N-Octyl-Sphingosine. The Ceramide Amide Group is not Required for Apoptosis. FEBS Journal, 1996, 236, 729-737.	0.2	69
67	Programmed cell death in the tobacco hornworm,Manduca sexta: Alteration in protein synthesis. Microscopy Research and Technique, 1996, 34, 192-201.	2.2	22
68	Cell death: programmed, apoptosis, necrosis, or other?. Cell Death and Differentiation, 1995, 2, 87-96.	11.2	142
69	Apoptotic Cell Death in the Mouse Limb and Its Suppression in the Hammertoe Mutant. Developmental Biology, 1994, 165, 294-297.	2.0	98
70	Rat sertoli and spermatogenic cells express a similar gene, and its product is antigenically related to an outer dense fiber-associated protein. Molecular Reproduction and Development, 1992, 33, 363-372.	2.0	10
71	Developmental expression of the S35-S45/SGP-2/TRPM-2 gene in rat testis and epididymis. Molecular Reproduction and Development, 1992, 33, 373-384.	2.0	22