Liberato Manna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9281924/publications.pdf

Version: 2024-02-01

439 papers 52,847 citations

108 h-index 219 g-index

463 all docs

463 docs citations

463 times ranked 37825 citing authors

#	Article	IF	CITATIONS
1	Shape control of CdSe nanocrystals. Nature, 2000, 404, 59-61.	27.8	4,216
2	Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. Journal of the American Chemical Society, 2015, 137, 10276-10281.	13.7	1,765
3	Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. Journal of the American Chemical Society, 2000, 122, 12700-12706.	13.7	1,719
4	Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials, 2018, 17, 394-405.	27.5	1,632
5	Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Materials, 2003, 2, 382-385.	27.5	1,373
6	Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chemical Reviews, 2019, 119, 3296-3348.	47.7	1,181
7	Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods. Science, 2001, 292, 2060-2063.	12.6	1,136
8	Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 2004, 430, 190-195.	27.8	1,127
9	Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Letters, 2007, 7, 2942-2950.	9.1	1,098
10	Prospects of Nanoscience with Nanocrystals. ACS Nano, 2015, 9, 1012-1057.	14.6	1,005
11	Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell:Â A General Route to Water Soluble Nanocrystals. Nano Letters, 2004, 4, 703-707.	9.1	1,003
12	Synthesis, properties and perspectives of hybrid nanocrystal structures. Chemical Society Reviews, 2006, 35, 1195.	38.1	855
13	Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. Journal of the American Chemical Society, 2016, 138, 1010-1016.	13.7	747
14	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
15	Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS Nano, 2012, 6, 3080-3091.	14.6	638
16	Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nature Nanotechnology, 2006, 1, 126-130.	31.5	573
17	Forging Colloidal Nanostructures via Cation Exchange Reactions. Chemical Reviews, 2016, 116, 10852-10887.	47.7	551
18	Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nature Energy, 2017, 2, .	39.5	544

#	Article	IF	CITATIONS
19	Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods. Journal of the American Chemical Society, 2002, 124, 7136-7145.	13.7	539
20	Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano, 2015, 9, 1788-1800.	14.6	536
21	Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2018, 140, 2656-2664.	13.7	490
22	Nearly Monodisperse Insulator Cs ₄ PbX ₆ (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX ₃ Nanocrystals. Nano Letters, 2017, 17, 1924-1930.	9.1	488
23	Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr ₃ Nanosheets with Lateral Size Control up to the Micrometer Range. Journal of the American Chemical Society, 2016, 138, 7240-7243.	13.7	446
24	Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nature Nanotechnology, 2014, 9, 891-895.	31.5	433
25	Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu _{2â€"<i>x</i>} Se Nanocrystals. Journal of the American Chemical Society, 2011, 133, 11175-11180.	13.7	421
26	From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, 2010, 62, 126-143.	7.1	417
27	Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Materials, 2011, 10, 872-876.	27.5	415
28	Colloidal Synthesis of Double Perovskite Cs ₂ AgInCl ₆ and Mn-Doped Cs ₂ AgInCl ₆ Nanocrystals. Journal of the American Chemical Society, 2018, 140, 12989-12995.	13.7	397
29	Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals. ACS Nano, 2018, 12, 1704-1711.	14.6	395
30	New materials for tunable plasmonic colloidal nanocrystals. Chemical Society Reviews, 2014, 43, 3957-3975.	38.1	383
31	Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu ⁺ lons. Journal of the American Chemical Society, 2013, 135, 17630-17637.	13.7	377
32	On the Development of Colloidal Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications. Small, 2004, 1, 48-63.	10.0	353
33	Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles. Nano Letters, 2013, 13, 2399-2406.	9.1	351
34	X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water. ACS Nano, 2016, 10, 1224-1230.	14.6	320
35	Fluorescent Alloy CsPb _{<i>x</i>} Mn _{1â€"<i>x</i>} I ₃ Perovskite Nanocrystals with High Structural and Optical Stability. ACS Energy Letters, 2017, 2, 2183-2186.	17.4	305
36	The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations. Nano Letters, 2004, 4, 2361-2365.	9.1	301

3

#	Article	IF	CITATIONS
37	Sequential Cation Exchange in Nanocrystals: Preservation of Crystal Phase and Formation of Metastable Phases. Nano Letters, 2011, 11, 4964-4970.	9.1	300
38	17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells. Energy and Environmental Science, 2015, 8, 2365-2370.	30.8	300
39	Semiconductor Nanorod Liquid Crystals. Nano Letters, 2002, 2, 557-560.	9.1	297
40	Strongly Fluorescent Quaternary Cu–In–Zn–S Nanocrystals Prepared from Cu _{1-<i>x</i>} InS ₂ Nanocrystals by Partial Cation Exchange. Chemistry of Materials, 2012, 24, 2400-2406.	6.7	291
41	Sequential Growth of Magic-Size CdSe Nanocrystals. Advanced Materials, 2007, 19, 548-552.	21.0	289
42	First-Principles Modeling of Unpassivated and Surfactant-Passivated Bulk Facets of Wurtzite CdSe:  A Model System for Studying the Anisotropic Growth of CdSe Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 6183-6192.	2.6	280
43	Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Physics Reports, 2017, 674, 1-52.	25.6	252
44	Assembly of Colloidal Semiconductor Nanorods in Solution by Depletion Attraction. Nano Letters, 2010, 10, 743-749.	9.1	250
45	CdSe/CdS/ZnS Double Shell Nanorods with High Photoluminescence Efficiency and Their Exploitation As Biolabeling Probes. Journal of the American Chemical Society, 2009, 131, 2948-2958.	13.7	247
46	<i>In Situ</i> Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2017, 11, 2124-2132.	14.6	246
47	The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics. Journal of Physical Chemistry Letters, 2014, 5, 3836-3842.	4.6	238
48	Phosphine-Free Synthesis of p-Type Copper(I) Selenide Nanocrystals in Hot Coordinating Solvents. Journal of the American Chemical Society, 2010, 132, 8912-8914.	13.7	232
49	Selective Growth of PbSe on One or Both Tips of Colloidal Semiconductor Nanorods. Nano Letters, 2005, 5, 445-449.	9.1	228
50	What Defines a Halide Perovskite?. ACS Energy Letters, 2020, 5, 604-610.	17.4	228
51	Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nature Nanotechnology, 2020, 15, 462-468.	31.5	226
52	Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators. ACS Energy Letters, 2017, 2, 2368-2377.	17.4	224
53	Shape and Phase Control of Colloidal ZnSe Nanocrystals. Chemistry of Materials, 2005, 17, 1296-1306.	6.7	220
54	Colloidal Synthesis of Strongly Fluorescent CsPbBr ₃ Nanowires with Width Tunable down to the Quantum Confinement Regime. Chemistry of Materials, 2016, 28, 6450-6454.	6.7	219

#	Article	IF	Citations
55	Tetrapod-Shaped Colloidal Nanocrystals of Ilâ^'VI Semiconductors Prepared by Seeded Growth. Journal of the American Chemical Society, 2009, 131, 2274-2282.	13.7	211
56	Zero-Dimensional Cesium Lead Halides: History, Properties, and Challenges. Journal of Physical Chemistry Letters, 2018, 9, 2326-2337.	4.6	210
57	The Many "Facets―of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals. Chemical Reviews, 2018, 118, 7804-7864.	47.7	209
58	Heterodimers Based on CoPt3â^'Au Nanocrystals with Tunable Domain Size. Journal of the American Chemical Society, 2006, 128, 6690-6698.	13.7	202
59	Emissive Bi-Doped Double Perovskite Cs ₂ Ag _{1$6$(sub>1/sub>Na_{<i>x</i>}InCl₆ Nanocrystals. ACS Energy Letters, 2019, 4, 1976-1982.}	17.4	198
60	Shape control and applications of nanocrystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 241-257.	3.4	184
61	Semiconductor Quantum Rods as Single Molecule Fluorescent Biological Labels. Nano Letters, 2007, 7, 179-182.	9.1	180
62	One-Pot Synthesis and Characterization of Size-Controlled Bimagnetic FePtâ^'Iron Oxide Heterodimer Nanocrystals. Journal of the American Chemical Society, 2008, 130, 1477-1487.	13.7	179
63	Determination of Band Offsets in Heterostructured Colloidal Nanorods Using Scanning Tunneling Spectroscopy. Nano Letters, 2008, 8, 2954-2958.	9.1	179
64	Postsynthesis Transformation of Insulating Cs ₄ PbBr ₆ Nanocrystals into Bright Perovskite CsPbBr ₃ through Physical and Chemical Extraction of CsBr. ACS Energy Letters, 2017, 2, 2445-2448.	17.4	177
65	Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals. Journal of the American Chemical Society, 2015, 137, 9315-9323.	13.7	174
66	Synthesis and Characterization of CdS Nanoclusters in a Quaternary Microemulsion:  the Role of the Cosurfactant. Journal of Physical Chemistry B, 2000, 104, 8391-8397.	2.6	173
67	From Binary Cu ₂ S to Ternary Cu–In–S and Quaternary Cu–In–Zn–S Nanocrystals with Tunable Composition <i>via</i> Partial Cation Exchange. ACS Nano, 2015, 9, 521-531.	14.6	173
68	Simultaneous Cationic and Anionic Ligand Exchange For Colloidally Stable CsPbBr ₃ Nanocrystals. ACS Energy Letters, 2019, 4, 819-824.	17.4	173
69	Octapod-Shaped Colloidal Nanocrystals of Cadmium Chalcogenides via "One-Pot―Cation Exchange and Seeded Growth. Nano Letters, 2010, 10, 3770-3776.	9.1	171
70	Leadâ€Free Double Perovskite Cs ₂ AgInCl ₆ . Angewandte Chemie - International Edition, 2021, 60, 11592-11603.	13.8	168
71	Multifunctional Nanobeads Based on Quantum Dots and Magnetic Nanoparticles: Synthesis and Cancer Cell Targeting and Sorting. ACS Nano, 2011, 5, 1109-1121.	14.6	166
72	Multiple Wurtzite Twinning in CdTe Nanocrystals Induced by Methylphosphonic Acid. Journal of the American Chemical Society, 2006, 128, 748-755.	13.7	165

#	Article	IF	CITATIONS
73	Plasmon Dynamics in Colloidal Cu _{2–<i>x</i>} Se Nanocrystals. Nano Letters, 2011, 11, 4711-4717.	9.1	158
74	Topologically Controlled Growth of Magnetic-Metal-Functionalized Semiconductor Oxide Nanorods. Nano Letters, 2007, 7, 1386-1395.	9.1	155
75	Epitaxial CdSe-Au Nanocrystal Heterostructures by Thermal Annealing. Nano Letters, 2010, 10, 3028-3036.	9.1	152
76	Polymer-Free Films of Inorganic Halide Perovskite Nanocrystals as UV-to-White Color-Conversion Layers in LEDs. Chemistry of Materials, 2016, 28, 2902-2906.	6.7	152
77	Generalized One-Pot Synthesis of Copper Sulfide, Selenide-Sulfide, and Telluride-Sulfide Nanoparticles. Chemistry of Materials, 2014, 26, 1442-1449.	6.7	150
78	Ultrafast Electronâ^'Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals. Nano Letters, 2008, 8, 4582-4587.	9.1	146
79	Temperature and Size Dependence of Nonradiative Relaxation and Excitonâ^Phonon Coupling in Colloidal CdTe Quantum Dots. Journal of Physical Chemistry C, 2007, 111, 5846-5849.	3.1	144
80	Resurfacing halide perovskite nanocrystals. Science, 2019, 364, 833-834.	12.6	143
81	Shape Control of Colloidal Semiconductor Nanocrystals. Journal of Cluster Science, 2002, 13, 521-532.	3.3	142
82	Förster energy transfer from blue-emitting polymers to colloidal CdSe∕ZnS core shell quantum dots. Applied Physics Letters, 2004, 85, 4169-4171.	3.3	142
83	Co _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size. Chemistry of Materials, 2016, 28, 1769-1780.	6.7	142
84	Changing the Dimensionality of Cesium Lead Bromide Nanocrystals by Reversible Postsynthesis Transformations with Amines. Chemistry of Materials, 2017, 29, 4167-4171.	6.7	142
85	Colloidal Synthesis and Characterization of Tetrapod-Shaped Magnetic Nanocrystals. Nano Letters, 2006, 6, 1966-1972.	9.1	140
86	Physical properties of elongated inorganic nanoparticles. Physics Reports, 2011, 501, 75-221.	25.6	138
87	Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange. ACS Nano, 2012, 6, 1637-1647.	14.6	138
88	Synthesis of Uniform Disk-Shaped Copper Telluride Nanocrystals and Cation Exchange to Cadmium Telluride Quantum Disks with Stable Red Emission. Journal of the American Chemical Society, 2013, 135, 12270-12278.	13.7	138
89	Cu _{3-<i>x</i>} P Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions. Chemistry of Materials, 2015, 27, 1120-1128.	6.7	137
90	The Phosphine Oxide Route toward Lead Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2018, 140, 14878-14886.	13.7	136

#	Article	IF	CITATIONS
91	Water solubilization of hydrophobic nanocrystals by means of poly(maleic) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 74	$12\mathrm{Td}_{133}$ (anhy
92	Shape-Pure, Nearly Monodispersed CsPbBr ₃ Nanocubes Prepared Using Secondary Aliphatic Amines. Nano Letters, 2018, 18, 7822-7831.	9.1	132
93	Dual Band Electrochromic Devices Based on Nb-Doped TiO ₂ Nanocrystalline Electrodes. ACS Nano, 2017, 11, 3576-3584.	14.6	130
94	Polarized Light Emitting Diode by Long-Range Nanorod Self-Assembling on a Water Surface. ACS Nano, 2009, 3, 1506-1512.	14.6	127
95	One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. Journal of Materials Chemistry B, 2014, 2, 4426.	5.8	127
96	Colloidal CuFeS ₂ Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency. Chemistry of Materials, 2016, 28, 4848-4858.	6.7	126
97	Alkyl Phosphonic Acids Deliver CsPbBr ₃ Nanocrystals with High Photoluminescence Quantum Yield and Truncated Octahedron Shape. Chemistry of Materials, 2019, 31, 9140-9147.	6.7	125
98	Alloyed Copper Chalcogenide Nanoplatelets <i>via</i> Partial Cation Exchange Reactions. ACS Nano, 2014, 8, 8407-8418.	14.6	123
99	Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods. Nanoscale, 2010, 2, 931.	5.6	120
100	Fluorescent Asymmetrically Cobalt-Tipped CdSe@CdS Core@Shell Nanorod Heterostructures Exhibiting Room-Temperature Ferromagnetic Behavior. Journal of the American Chemical Society, 2009, 131, 12817-12828.	13.7	119
101	Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals. Nature Communications, 2013, 4, 2376.	12.8	118
102	Bright-Emitting Perovskite Films by Large-Scale Synthesis and Photoinduced Solid-State Transformation of CsPbBr ₃ Nanoplatelets. ACS Nano, 2017, 11, 10206-10213.	14.6	118
103	Tuning the Lattice Parameter of In _{<i>x</i>} Zn _{<i>y</i>} P for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots. ACS Nano, 2016, 10, 4754-4762.	14.6	117
104	White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. Journal of Applied Physics, 2005, 97, 113501.	2.5	115
105	A sustainable future for photonic colloidal nanocrystals. Chemical Society Reviews, 2015, 44, 5897-5914.	38.1	115
106	Endâ€toâ€End Assembly of Shapeâ€Controlled Nanocrystals via a Nanowelding Approach Mediated by Gold Domains. Advanced Materials, 2009, 21, 550-554.	21.0	114
107	Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals. Journal of the American Chemical Society, 2014, 136, 16277-16284.	13.7	111
108	Cation Exchange Reactions in Colloidal Branched Nanocrystals. ACS Nano, 2011, 5, 7176-7183.	14.6	110

#	Article	IF	Citations
109	Understanding the Plasmon Resonance in Ensembles of Degenerately Doped Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 12226-12231.	3.1	109
110	Selective reactions on the tips of colloidal semiconductor nanorods. Journal of Materials Chemistry, 2006, 16, 3952.	6.7	108
111	Colloidal Monolayer \hat{l}^2 -In ₂ Se ₃ Nanosheets with High Photoresponsivity. Journal of the American Chemical Society, 2017, 139, 3005-3011.	13.7	105
112	Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 3844-3853.	9.1	101
113	Multifunctional Nanostructures Based on Inorganic Nanoparticles and Oligothiophenes and Their Exploitation for Cellular Studies. Journal of the American Chemical Society, 2008, 130, 10545-10555.	13.7	98
114	Ultrafast THz Probe of Photoinduced Polarons in Lead-Halide Perovskites. Physical Review Letters, 2019, 122, 166601.	7.8	98
115	Suppression of Biexciton Auger Recombination in CdSe/CdS Dot/Rods: Role of the Electronic Structure in the Carrier Dynamics. Nano Letters, 2010, 10, 3142-3150.	9.1	97
116	Fluorescent-Magnetic Hybrid Nanostructures: Preparation, Properties, and Applications in Biology. IEEE Transactions on Nanobioscience, 2007, 6, 298-308.	3.3	96
117	Reversible Wettability Changes in Colloidal TiO ₂ Nanorod Thin-Film Coatings under Selective UV Laser Irradiation. Journal of Physical Chemistry C, 2008, 112, 701-714.	3.1	96
118	From CsPbBr ₃ Nano-Inks to Sintered CsPbBr ₃ 8r ₅ Films via Thermal Annealing: Implications on Optoelectronic Properties. Journal of Physical Chemistry C, 2017, 121, 11956-11961.	3.1	96
119	Size-Tunable, Hexagonal Plate-like Cu ₃ P and Janus-like Cu–Cu ₃ P Nanocrystals. ACS Nano, 2012, 6, 32-41.	14.6	94
120	Colloidal Branched Semiconductor Nanocrystals: State of the Art and Perspectives. Accounts of Chemical Research, 2013, 46, 1387-1396.	15.6	94
121	Hollow and Porous Nickel Cobalt Perselenide Nanostructured Microparticles for Enhanced Electrocatalytic Oxygen Evolution. Chemistry of Materials, 2017, 29, 7032-7041.	6.7	93
122	Exfoliation of Few-Layer Black Phosphorus in Low-Boiling-Point Solvents and Its Application in Li-Ion Batteries. Chemistry of Materials, 2018, 30, 506-516.	6.7	93
123	Trap-Mediated Two-Step Sensitization of Manganese Dopants in Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 85-93.	17.4	92
124	Stable and Size Tunable CsPbBr ₃ Nanocrystals Synthesized with Oleylphosphonic Acid. Nano Letters, 2020, 20, 8847-8853.	9.1	92
125	Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field. Physical Review B, 2008, 78, .	3.2	91
126	In situ microscopy of the self-assembly of branched nanocrystals in solution. Nature Communications, 2016, 7, 11213.	12.8	91

#	Article	IF	Citations
127	Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route. Journal of Materials Chemistry C, 2014, 2, 3439.	5.5	90
128	Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment. Chemistry of Materials, 2015, 27, 7531-7537.	6.7	89
129	Squeezing Terahertz Light into Nanovolumes: Nanoantenna Enhanced Terahertz Spectroscopy (NETS) of Semiconductor Quantum Dots. Nano Letters, 2015, 15, 386-391.	9.1	86
130	Investigation into the Photoluminescence Red Shift in Cesium Lead Bromide Nanocrystal Superlattices. Journal of Physical Chemistry Letters, 2019, 10, 655-660.	4.6	86
131	Selfâ€Assembled Multilayers of Vertically Aligned Semiconductor Nanorods on Deviceâ€Scale Areas. Advanced Materials, 2011, 23, 2205-2209.	21.0	83
132	Role of the Crystal Structure in Cation Exchange Reactions Involving Colloidal Cu ₂ Se Nanocrystals. Journal of the American Chemical Society, 2017, 139, 9583-9590.	13.7	83
133	Sb-Doped Metal Halide Nanocrystals: A 0D versus 3D Comparison. ACS Energy Letters, 2021, 6, 2283-2292.	17.4	83
134	Blue light emitting diodes based on fluorescent CdSeâ^•ZnS nanocrystals. Applied Physics Letters, 2007, 90, 051106.	3.3	82
135	Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters. Nanoscale, 2014, 6, 3764-3776.	5.6	79
136	Binder-free graphene as an advanced anode for lithium batteries. Journal of Materials Chemistry A, 2016, 4, 6886-6895.	10.3	79
137	Stable Ligand Coordination at the Surface of Colloidal CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 3715-3726.	4.6	77
138	Room temperature-dipolelike single photon source with a colloidal dot-in-rod. Applied Physics Letters, 2010, 96, 033101.	3.3	75
139	Photoconduction Properties in Aligned Assemblies of Colloidal CdSe/CdS Nanorods. ACS Nano, 2010, 4, 1646-1652.	14.6	73
140	Nonlinear Carrier Interactions in Lead Halide Perovskites and the Role of Defects. Journal of the American Chemical Society, 2016, 138, 13604-13611.	13.7	73
141	Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: Role of the surface and interface defects. Physical Review B, 2005, 72, .	3.2	72
142	Ligand exchange of CdSe nanocrystals probed by optical spectroscopy in the visible and mid-IR. Journal of Materials Chemistry, 2008, 18, 2728.	6.7	71
143	A Cast-Mold Approach to Iron Oxide and Pt/Iron Oxide Nanocontainers and Nanoparticles with a Reactive Concave Surface. Journal of the American Chemical Society, 2011, 133, 2205-2217.	13.7	71
144	Colloidal Cu2â^x(SySe1â^y) alloy nanocrystals with controllable crystal phase: synthesis, plasmonic properties, cation exchange and electrochemical lithiation. Journal of Materials Chemistry, 2012, 22, 13023.	6.7	70

#	Article	IF	Citations
145	Singleâ€Mode Lasing from Colloidal Waterâ€Soluble CdSe/CdS Quantum Dotâ€inâ€Rods. Small, 2015, 11, 1328-1334.	10.0	70
146	High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers. Nano Letters, 2015, 15, 5455-5464.	9.1	69
147	Elastomeric Nanocomposite Foams for the Removal of Heavy Metal Ions from Water. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14778-14784.	8.0	69
148	Large scale syntheses of colloidal nanomaterials. Nano Today, 2017, 12, 46-63.	11.9	69
149	Directional Anisotropy of the Vibrational Modes in 2D-Layered Perovskites. ACS Nano, 2020, 14, 4689-4697.	14.6	69
150	Low-Temperature Molten Salts Synthesis: CsPbBr ₃ Nanocrystals with High Photoluminescence Emission Buried in Mesoporous SiO ₂ . ACS Energy Letters, 2021, 6, 900-907.	17.4	68
151	Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals. Journal of the American Chemical Society, 2016, 138, 7082-7090.	13.7	67
152	Colloidal CsX (X = Cl, Br, I) Nanocrystals and Their Transformation to CsPbX (sub) 3 (sub) Nanocrystals by Cation Exchange. Chemistry of Materials, 2018, 30, 79-83.	6.7	67
153	Magnetic–Fluorescent Colloidal Nanobeads: Preparation and Exploitation in Cell Separation Experiments. Macromolecular Bioscience, 2009, 9, 952-958.	4.1	66
154	Colloidal Synthesis of Cuprite (Cu ₂ O) Octahedral Nanocrystals and Their Electrochemical Lithiation. ACS Applied Materials & Interfaces, 2013, 5, 2745-2751.	8.0	66
155	Temperature-Driven Transformation of CsPbBr ₃ Nanoplatelets into Mosaic Nanotiles in Solution through Self-Assembly. Nano Letters, 2020, 20, 1808-1818.	9.1	66
156	Culn _{<i>x</i>} Ga _{1â "<i>x</i>} S ₂ Nanocrystals with Tunable Composition and Band Gap Synthesized via a Phosphine-Free and Scalable Procedure. Chemistry of Materials, 2013, 25, 3180-3187.	6.7	65
157	Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals. Nature Communications, 2015, 6, 7905.	12.8	65
158	Direct Synthesis of Carbon-Doped TiO ₂ â€"Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25139-25146.	8.0	65
159	Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement. ACS Photonics, 2018, 5, 2287-2294.	6.6	65
160	Assembly of shape-controlled nanocrystals by depletion attraction. Chemical Communications, 2011, 47, 203-205.	4.1	64
161	Influence of Chloride Ions on the Synthesis of Colloidal Branched CdSe/CdS Nanocrystals by Seeded Growth. ACS Nano, 2012, 6, 11088-11096.	14.6	64
162	Compositional Tuning of Carrier Dynamics in Cs ₂ Na _{1â€"<i>x</i>} Ag _{<i>x</i>} BiCl ₆ Double-Perovskite Nanocrystals. ACS Energy Letters, 2020, 5, 1840-1847.	17.4	63

#	Article	lF	CITATIONS
163	Bright Blue Emitting Cu-Doped Cs ₂ ZnCl ₄ Colloidal Nanocrystals. Chemistry of Materials, 2020, 32, 5897-5903.	6.7	63
164	Evolution of CsPbBr ₃ nanocrystals upon post-synthesis annealing under an inert atmosphere. Journal of Materials Chemistry C, 2016, 4, 9179-9182.	5.5	62
165	Green-Emitting Powders of Zero-Dimensional Cs ₄ PbBr ₆ : Delineating the Intricacies of the Synthesis and the Origin of Photoluminescence. Chemistry of Materials, 2019, 31, 7761-7769.	6.7	62
166	Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites. Beilstein Journal of Nanotechnology, 2010, 1, 94-100.	2.8	61
167	Direct Determination of Polarity, Faceting, and Core Location in Colloidal Core/Shell Wurtzite Semiconductor Nanocrystals. ACS Nano, 2012, 6, 6453-6461.	14.6	61
168	Charge Transport and Electrochemical Properties of Colloidal Greigite (Fe ₃ S ₄) Nanoplatelets. Chemistry of Materials, 2011, 23, 3762-3768.	6.7	60
169	Thermal Stability and Anisotropic Sublimation of Two-Dimensional Colloidal Bi ₂ Te ₃ and Bi ₂ Se ₃ Nanocrystals. Nano Letters, 2016, 16, 4217-4223.	9.1	60
170	Low-Temperature Electron Beam-Induced Transformations of Cesium Lead Halide Perovskite Nanocrystals. ACS Omega, 2017, 2, 5660-5665.	3.5	60
171	Fully Inorganic Ruddlesden–Popper Double Cl–I and Triple Cl–Br–I Lead Halide Perovskite Nanocrystals. Chemistry of Materials, 2019, 31, 2182-2190.	6.7	60
172	<i>N</i> -Methylformamide as a Source of Methylammonium Ions in the Synthesis of Lead Halide Perovskite Nanocrystals and Bulk Crystals. ACS Energy Letters, 2016, 1, 1042-1048.	17.4	59
173	Transforming colloidal Cs ₄ PbBr ₆ nanocrystals with poly(maleic) Tj ETQq1 1 0.784314 r intermediate heterostructures. Chemical Science, 2020, 11, 3986-3995.	gBT /Over 7.4	lock 10 Tf 5 59
174	Improved Photovoltaic Performance of Heterostructured Tetrapodâ€Shaped CdSe/CdTe Nanocrystals Using C60 Interlayer. Advanced Materials, 2009, 21, 4461-4466.	21.0	58
175	Mechanochemical synthesis of inorganic halide perovskites: evolution of phase-purity, morphology, and photoluminescence. Journal of Materials Chemistry C, 2019, 7, 11406-11410.	5.5	58
176	CO Oxidation on Colloidal Au _{0.80} Pd _{0.20} –Fe _{<i>x</i>} O _{<i>y</i>} Dumbbell Nanocrystals. Nano Letters, 2013, 13, 752-757.	9.1	57
177	Effect of Core/Shell Interface on Carrier Dynamics and Optical Gain Properties of Dual-Color Emitting CdSe/CdS Nanocrystals. ACS Nano, 2016, 10, 6877-6887.	14.6	57
178	Colloidal Ordered Assemblies in a Polymer Shell—A Novel Type of Magnetic Nanobeads for Theranostic Applications. Chemistry of Materials, 2013, 25, 1055-1062.	6.7	56
179	Redox Centers Evolution in Phospho-Olivine Type (LiFe _{0.5} Mn _{0.5}) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
180	Post-Synthesis Incorporation of ⁶⁴ Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. Journal of the American Chemical Society, 2015, 137, 15145-15151.	13.7	56

#	Article	IF	Citations
181	Tips on growing nanocrystals. Nature Materials, 2005, 4, 801-802.	27.5	55
182	Ordered Two-Dimensional Superstructures of Colloidal Octapod-Shaped Nanocrystals on Flat Substrates. Nano Letters, 2012, 12, 5299-5303.	9.1	55
183	Selective Cation Exchange in the Core Region of Cu _{2â€"<i>x</i>} S Core/Shell Nanocrystals. Journal of the American Chemical Society, 2015, 137, 12195-12198.	13.7	55
184	Halide Perovskite–Lead Chalcohalide Nanocrystal Heterostructures. Journal of the American Chemical Society, 2021, 143, 1435-1446.	13.7	55
185	Acidic pH-Responsive Nanogels as Smart Cargo Systems for the Simultaneous Loading and Release of Short Oligonucleotides and Magnetic Nanoparticles. Langmuir, 2010, 26, 10315-10324.	3.5	54
186	Nanoscale Transformations of Alumina-Supported AuCu Ordered Phase Nanocrystals and Their Activity in CO Oxidation. ACS Catalysis, 2015, 5, 2154-2163.	11.2	54
187	Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4. Nano Energy, 2015, 16, 256-267.	16.0	54
188	Etched Colloidal LiFePO4 Nanoplatelets toward High-Rate Capable Li-Ion Battery Electrodes. Nano Letters, 2014, 14, 6828-6835.	9.1	53
189	Fe ²⁺ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. Nano Letters, 2018, 18, 6856-6866.	9.1	53
190	Synthesis and Biological Assay of GSH Functionalized Fluorescent Quantum Dots for StainingHydra vulgaris. Bioconjugate Chemistry, 2007, 18, 829-835.	3.6	52
191	Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO ₄ with Ca ²⁺ . Nano Letters, 2016, 16, 2692-2697.	9.1	52
192	Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties. ACS Energy Letters, 2020, 5, 642-649.	17.4	52
193	Tuning and Locking the Localized Surface Plasmon Resonances of CuS (Covellite) Nanocrystals by an Amorphous CuPd _{<i>x</i>} S Shell. Chemistry of Materials, 2017, 29, 1716-1723.	6.7	50
194	Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots. Chemistry of Materials, 2017, 29, 5192-5199.	6.7	50
195	Reversible Concentration-Dependent Photoluminescence Quenching and Change of Emission Color in CsPbBr ₃ Nanowires and Nanoplatelets. Journal of Physical Chemistry Letters, 2017, 8, 2725-2729.	4.6	50
196	In situ LiFePO4 nano-particles grown on few-layer graphene flakes as high-power cathode nanohybrids for lithium-ion batteries. Nano Energy, 2018, 51, 656-667.	16.0	50
197	Growth of colloidal nanoparticles of group II–VI and IV–VI semiconductors on top of magnetic iron–platinum nanocrystals. Journal of Materials Chemistry, 2008, 18, 4311.	6.7	49
198	Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals. Applied Physics Letters, 2003, 82, 418-420.	3.3	48

#	Article	IF	CITATIONS
199	Selfâ€assembled CdSe/CdS nanorod microâ€lasers fabricated from solution by capillary jet deposition. Laser and Photonics Reviews, 2012, 6, 678-683.	8.7	47
200	Ultrafast Optical Mapping of Nonlinear Plasmon Dynamics in Cu _{2–<i>x</i>} Se Nanoparticles. Journal of Physical Chemistry Letters, 2013, 4, 3337-3344.	4.6	47
201	Recent Progress in Halide Perovskite Radiation Detectors for Gamma-Ray Spectroscopy. ACS Energy Letters, 2022, 7, 1066-1085.	17.4	47
202	Recent Progress in Mixed Aâ€Site Cation Halide Perovskite Thinâ€Films and Nanocrystals for Solar Cells and Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	47
203	Confined Optical Phonon Modes in Aligned Nanorod Arrays Detected by Resonant Inelastic Light Scattering. Nano Letters, 2007, 7, 476-479.	9.1	46
204	Picosecond Photoluminescence Decay Time in Colloidal Nanocrystals:  The Role of Intrinsic and Surface States. Journal of Physical Chemistry C, 2007, 111, 10541-10545.	3.1	46
205	Colloidal PbTe–Aunanocrystal heterostructures. Journal of Materials Chemistry, 2010, 20, 1357-1366.	6.7	46
206	Charge Transport in Nanoscale "All-Inorganic―Networks of Semiconductor Nanorods Linked by Metal Domains. ACS Nano, 2012, 6, 2940-2947.	14.6	46
207	Two-Photon-Induced Blue Shift of Core and Shell Optical Transitions in Colloidal CdSe/CdS Quasi-Type II Quantum Rods. ACS Nano, 2013, 7, 2443-2452.	14.6	46
208	Nanocrystal Film Patterning by Inhibiting Cation Exchange via Electron-Beam or X-ray Lithography. Nano Letters, 2014, 14, 2116-2122.	9.1	46
209	Fully Solutionâ€Processed Conductive Films Based on Colloidal Copper Selenide Nanosheets for Flexible Electronics. Advanced Functional Materials, 2016, 26, 3670-3677.	14.9	46
210	Ultrafast Photodoping and Plasmon Dynamics in Fluorine–Indium Codoped Cadmium Oxide Nanocrystals for All-Optical Signal Manipulation at Optical Communication Wavelengths. Journal of Physical Chemistry Letters, 2016, 7, 3873-3881.	4.6	46
211	Superlattices are Greener on the Other Side: How Light Transforms Self-Assembled Mixed Halide Perovskite Nanocrystals. ACS Energy Letters, 2020, 5, 1465-1473.	17.4	46
212	Aging of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer. ACS Nano, 2021, 15, 650-664.	14.6	46
213	Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals. Journal of Magnetism and Magnetic Materials, 2008, 320, e320-e323.	2.3	45
214	Chemically induced self-assembly of spherical and anisotropic inorganic nanocrystals. Journal of Materials Chemistry, 2011, 21, 16694.	6.7	45
215	Wide-Angle X-ray Diffraction Evidence of Structural Coherence in CsPbBr ₃ Nanocrystal Superlattices., 2019, 1, 272-276.		45
216	Alloy CsCd <i>_x</i> Pb _{1â€"<i>x</i>} Br ₃ Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission. Chemistry of Materials, 2020, 32, 10641-10652.	6.7	45

#	Article	IF	Citations
217	Optical properties of tetrapod-shaped CdTe nanocrystals. Applied Physics Letters, 2005, 87, 224101.	3.3	44
218	Broadband Defects Emission and Enhanced Ligand Raman Scattering in OD Cs ₃ Bi ₂ I ₉ Colloidal Nanocrystals. Advanced Functional Materials, 2019, 29, 1805299.	14.9	44
219	Are There Good Alternatives to Lead Halide Perovskite Nanocrystals?. Nano Letters, 2021, 21, 6-9.	9.1	44
220	Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics. Journal of Physics Condensed Matter, 2009, 21, 264013.	1.8	42
221	Self-Assembly of Octapod-Shaped Colloidal Nanocrystals into a Hexagonal Ballerina Network Embedded in a Thin Polymer Film. Nano Letters, 2014, 14, 1056-1063.	9.1	42
222	Colloidal Bi-Doped Cs ₂ Ag _{1–<i>x</i>} Na _{<i>x</i>} InCl ₆ Nanocrystals: Undercoordinated Surface Cl Ions Limit their Light Emission Efficiency., 2020, 2, 1442-1449.		41
223	Mobility and Spatial Distribution of Photoexcited Electrons in CdSe/CdS Nanorods. Journal of Physical Chemistry C, 2013, 117, 3146-3151.	3.1	40
224	Locating and Controlling the Zn Content in In(Zn)P Quantum Dots. Chemistry of Materials, 2020, 32, 557-565.	6.7	40
225	Role of the shell thickness in stimulated emission and photoinduced absorption inCdSecore/shell nanorods. Physical Review B, 2006, 73, .	3.2	39
226	Metamorphoses of Cesium Lead Halide Nanocrystals. Accounts of Chemical Research, 2021, 54, 498-508.	15.6	39
227	Rodâ€Shaped Nanocrystals Elicit Neuronal Activity In Vivo. Small, 2008, 4, 1747-1755.	10.0	38
228	Two-Dimensional Photonic Crystal Resist Membrane Nanocavity Embedding Colloidal Dot-in-a-Rod Nanocrystals. Nano Letters, 2008, 8, 260-264.	9.1	38
229	Laserâ€Induced Localized Growth of Methylammonium Lead Halide Perovskite Nano―and Microcrystals on Substrates. Advanced Functional Materials, 2017, 27, 1701613.	14.9	38
230	Quasi-Static Resonances in the Visible Spectrum from All-Dielectric Intermediate Band Semiconductor Nanocrystals. Nano Letters, 2017, 17, 7691-7695.	9.1	38
231	Electronâ^'Hole Dynamics in CdTe Tetrapods. Journal of Physical Chemistry B, 2006, 110, 17334-17338.	2.6	37
232	Dots in rods as polarized single photon sources. Superlattices and Microstructures, 2010, 47, 165-169.	3.1	37
233	The effect of Au domain size on the CO oxidation catalytic activity of colloidal Au–FeOx dumbbell-like heterodimers. Journal of Catalysis, 2016, 338, 115-123.	6.2	37
234	Ultrathin Orthorhombic PbS Nanosheets. Chemistry of Materials, 2019, 31, 8145-8153.	6.7	37

#	Article	IF	CITATIONS
235	Composition-, Size-, and Surface Functionalization-Dependent Optical Properties of Lead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 2079-2085.	4.6	37
236	Colloidal CdSe/Cu ₃ P/CdSe Nanocrystal Heterostructures and Their Evolution upon Thermal Annealing. ACS Nano, 2013, 7, 3997-4005.	14.6	36
237	Molecular Iodine for a General Synthesis of Binary and Ternary Inorganic and Hybrid Organic–Inorganic Iodide Nanocrystals. Chemistry of Materials, 2018, 30, 6915-6921.	6.7	36
238	Leadâ€Free Double Perovskite Cs ₂ AgInCl ₆ . Angewandte Chemie, 2021, 133, 11696-11707.	2.0	36
239	Confinement Effects on Optical Phonons in Polar Tetrapod Nanocrystals Detected by Resonant Inelastic Light Scattering. Nano Letters, 2006, 6, 478-482.	9.1	35
240	Amplified spontaneous emission from core and shell transitions in CdSe/CdS nanorods fabricated by seeded growth. Applied Physics Letters, 2011, 98, .	3.3	35
241	O ₂ as a molecular probe for nonradiative surface defects in CsPbBr ₃ perovskite nanostructures and single crystals. Nanoscale, 2019, 11, 7613-7623.	5.6	35
242	Fluorescence enhancement in colloidal semiconductor nanocrystals by metallic nanopatterns. Sensors and Actuators B: Chemical, 2007, 126, 187-192.	7.8	34
243	Writing on Nanocrystals: Patterning Colloidal Inorganic Nanocrystal Films through Irradiation-Induced Chemical Transformations of Surface Ligands. Journal of the American Chemical Society, 2017, 139, 13250-13259.	13.7	34
244	Hidden in Plain Sight: The Overlooked Influence of the Cs ⁺ Substructure on Transformations in Cesium Lead Halide Nanocrystals. ACS Energy Letters, 2020, 5, 3409-3414.	17.4	34
245	Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures. Journal of the American Chemical Society, 2020, 142, 10198-10211.	13.7	34
246	Switchable Anion Exchange in Polymer-Encapsulated APbX ₃ Nanocrystals Delivers Stable All-Perovskite White Emitters. ACS Energy Letters, 2021, 6, 2844-2853.	17.4	34
247	Chemical Transformation of Au-Tipped CdS Nanorods into AuS/Cd Core/Shell Particles by Electron Beam Irradiation. Nano Letters, 2011, 11, 4555-4561.	9.1	33
248	Plasmon Dynamics in Colloidal Au ₂ Cd Alloy–CdSe Core/Shell Nanocrystals. ACS Nano, 2013, 7, 1045-1053.	14.6	33
249	AuCu alloy nanoparticles supported on SiO2: Impact of redox pretreatments in the catalyst performance in CO oxidation. Catalysis Today, 2017, 282, 105-110.	4.4	33
250	The Reactivity of CsPbBr ₃ Nanocrystals toward Acid/Base Ligands. ACS Nano, 2022, 16, 1444-1455.	14.6	33
251	Plasmon Bleaching Dynamics in Colloidal Gold–Iron Oxide Nanocrystal Heterodimers. Nano Letters, 2012, 12, 921-926.	9.1	32
252	Hollow and Concave Nanoparticles via Preferential Oxidation of the Core in Colloidal Core/Shell Nanocrystals. Journal of the American Chemical Society, 2014, 136, 9061-9069.	13.7	32

#	Article	IF	Citations
253	Understanding and tailoring ligand interactions in the self-assembly of branched colloidal nanocrystals into planar superlattices. Nature Communications, 2018, 9, 1141.	12.8	32
254	Optically induced light modulation in an hybrid nanocomposite system of inorganic CdSe/CdS nanorods and nematic liquid crystals. Optical Materials, 2010, 32, 1011-1016.	3.6	31
255	The Crucial Role of the Support in the Transformations of Bimetallic Nanoparticles and Catalytic Performance. ACS Catalysis, 2018, 8, 1031-1037.	11.2	31
256	HfN Nanoparticles: An Unexplored Catalyst for the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 15464-15470.	13.8	31
257	Tunable Near-Infrared Localized Surface Plasmon Resonance of F, In-Codoped CdO Nanocrystals. ACS Applied Materials & District Science (1988) Applied Materials (1988) Applied Materials (1988) ACS Applied Materials (1988)	8.0	31
258	Simple fabrication of layered halide perovskite platelets and enhanced photoluminescence from mechanically exfoliated flakes. Nanoscale, 2019, 11, 8334-8342.	5.6	31
259	Atomic Ligand Passivation of Colloidal Nanocrystal Films via their Reaction with Propyltrichlorosilane. Chemistry of Materials, 2013, 25, 1423-1429.	6.7	30
260	Gold–iron oxide dimers for magnetic hyperthermia: the key role of chloride ions in the synthesis to boost the heating efficiency. Journal of Materials Chemistry B, 2017, 5, 4587-4594.	5.8	30
261	Coating Evaporated MAPI Thin Films with Organic Molecules: Improved Stability at High Temperature and Implementation in High-Efficiency Solar Cells. ACS Energy Letters, 2018, 3, 835-839.	17.4	30
262	Cesium Manganese Bromide Nanocrystal Sensitizers for Broadband Vis-to-NIR Downshifting. ACS Energy Letters, 2022, 7, 1850-1858.	17.4	30
263	Sustainable nanotechnology. Chemical Society Reviews, 2015, 44, 5755-5757.	38.1	29
264	Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals. ACS Nano, 2021, 15, 6243-6256.	14.6	29
265	Exploiting the Transformative Features of Metal Halides for the Synthesis of CsPbBr ₃ @SiO ₂ Coreâ€"Shell Nanocrystals. Chemistry of Materials, 2022, 34, 405-413.	6.7	29
266	Fast Aâ€Site Cation Crossâ€Exchange at Room Temperature: Singleâ€to Double―and Tripleâ€Cation Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
267	Phototransport in networks of tetrapod-shaped colloidal semiconductor nanocrystals. Nanoscale, 2010, 2, 2171.	5.6	28
268	Lateral epitaxial heterojunctions in single nanowires fabricated by masked cation exchange. Nature Communications, 2018, 9, 505.	12.8	28
269	Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au ³⁺ ions. Nanoscale, 2018, 10, 2781-2789.	5.6	28
270	Ruthenium-Decorated Cobalt Selenide Nanocrystals for Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 5695-5703.	5.0	28

#	Article	IF	Citations
271	Tic-Tac-Toe Binary Lattices from the Interfacial Self-Assembly of Branched and Spherical Nanocrystals. ACS Nano, 2016, 10, 4345-4353.	14.6	27
272	Control of electronic band profiles through depletion layer engineering in core–shell nanocrystals. Nature Communications, 2022, 13, 537.	12.8	27
273	Three-dimensional coherent diffractive imaging on non-periodic specimens at the ESRF beamline ID10. Journal of Synchrotron Radiation, 2014, 21, 594-599.	2.4	26
274	Niâ€"Coâ€"Sâ€"Se Alloy Nanocrystals: Influence of the Composition on Their in Situ Transformation and Electrocatalytic Activity for the Oxygen Evolution Reaction. ACS Applied Nano Materials, 2018, 1, 5753-5762.	5.0	26
275	Robustness to High Temperatures of Al ₂ O ₃ -Coated CsPbBr ₃ Nanocrystal Thin Films with High-Photoluminescence Quantum Yield for Light Emission. ACS Applied Nano Materials, 2020, 3, 8167-8175.	5.0	26
276	Octapod-Shaped CdSe Nanocrystals Hosting Pt with High Mass Activity for the Hydrogen Evolution Reaction. Chemistry of Materials, 2020, 32, 2420-2429.	6.7	26
277	Electrochemical p-Doping of CsPbBr ₃ Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 2519-2525.	17.4	26
278	Pyramid-Shaped Wurtzite CdSe Nanocrystals with Inverted Polarity. ACS Nano, 2015, 9, 8537-8546.	14.6	25
279	Colloidal Synthesis of Bipolar Off-Stoichiometric Gallium Iron Oxide Spinel-Type Nanocrystals with Near-IR Plasmon Resonance. Journal of the American Chemical Society, 2017, 139, 1198-1206.	13.7	25
280	<i>Ab Initio</i> Structure Determination of Cu _{2–<i>x</i>} Te Plasmonic Nanocrystals by Precession-Assisted Electron Diffraction Tomography and HAADF-STEM Imaging. Inorganic Chemistry, 2018, 57, 10241-10248.	4.0	25
281	A superbright X-ray laboratory microsource empowered by a novel restoration algorithm. Journal of Applied Crystallography, 2012, 45, 1228-1235.	4.5	23
282	Bragg extraction of light in 2D photonic Thue–Morse quasicrystals patterned in active CdSe/CdS nanorod–polymer nanocomposites. Nanoscale, 2013, 5, 331-336.	5.6	23
283	Cu ₂ Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated <i>In Situ</i> Cation Exchange. ACS Nano, 2016, 10, 2406-2414.	14.6	23
284	CsPbX ₃ /SiO _x (X = Cl, Br, I) monoliths prepared <i>via</i> a novel sol–gel route starting from Cs ₄ PbX ₆ nanocrystals. Nanoscale, 2019, 11, 18739-18745.	5.6	23
285	Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applications. ACS Applied Nano Materials, 2020, 3, 3859-3867.	5.0	23
286	Engineering the Optical Emission and Robustness of Metalâ€Halide Layered Perovskites through Ligand Accommodation. Advanced Materials, 2021, 33, e2008004.	21.0	23
287	Topochemical Transformation of Two-Dimensional VSe ₂ into Metallic Nonlayered VO ₂ for Water Splitting Reactions in Acidic and Alkaline Media. ACS Nano, 2022, 16, 351-367.	14.6	23
288	Fluorescence resonance energy transfer induced by conjugation of metalloproteins to nanoparticles. Chemical Physics Letters, 2006, 417, 351-357.	2.6	22

#	Article	IF	Citations
289	Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures. Nanoscale, 2011, 3, 4647.	5.6	21
290	Thermally Induced Structural and Morphological Changes of CdSe/CdS Octapods. Small, 2012, 8, 937-942.	10.0	21
291	"Quantized―Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters. ACS Nano, 2017, 11, 6233-6242.	14.6	21
292	Magnetic Transitions and Energy Transfer Processes in Sb-Based Zero-Dimensional Metal Halide Nanocrystals Doped with Manganese. ACS Energy Letters, 2022, 7, 1566-1573.	17.4	21
293	ZnCl ₂ Mediated Synthesis of InAs Nanocrystals with Aminoarsine. Journal of the American Chemical Society, 2022, 144, 10515-10523.	13.7	21
294	The Role of Intrinsic and Surface States on the Emission Properties of Colloidal CdSe and CdSe/ZnS Quantum Dots. Nanoscale Research Letters, 2007, 2, 512-514.	5.7	20
295	Improved photovoltaic performance of bilayer heterojunction photovoltaic cells by triplet materials and tetrapod-shaped colloidal nanocrystals doping. Applied Physics Letters, 2009, 95, 043101.	3.3	20
296	Spinning nanorods $\hat{a}\in$ active optical manipulation of semiconductor nanorods using polarised light. Nanoscale, 2012, 4, 3693.	5.6	20
297	Dumbbell-like Au _{0.5} Cu _{0.5} @Fe ₃ O ₄ Nanocrystals: Synthesis, Characterization, and Catalytic Activity in CO Oxidation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28624-28632.	8.0	20
298	Relevance of LiPF ₆ as Etching Agent of LiMnPO ₄ Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4069-4075.	8.0	20
299	Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level. Nanomaterials, 2018, 8, 315.	4.1	20
300	Understanding Thermal and A‶hermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes. Advanced Functional Materials, 2021, 31, 2104879.	14.9	20
301	High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology. Applied Physics Letters, 2006, 88, 181108.	3.3	19
302	Probe Tips Functionalized with Colloidal Nanocrystal Tetrapods for Highâ€Resolution Atomic Force Microscopy Imaging. Small, 2008, 4, 2123-2126.	10.0	19
303	Ultrafast Exciton Dynamics in Colloidal CdSe/CdS Octapod Shaped Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 9005-9011.	3.1	19
304	Selfâ€Assembled Dense Colloidal Cu ₂ Te Nanodisk Networks in P3HT Thin Films with Enhanced Photocurrent. Advanced Functional Materials, 2016, 26, 4535-4542.	14.9	19
305	Selfâ€Assembly of Amphiphilic Nanocrystals. Angewandte Chemie - International Edition, 2009, 48, 4282-4283.	13.8	18
306	Ultrafast carrier dynamics in gold/iron-oxide nanocrystal heterodimers. Applied Physics Letters, 2011, 99, 011907.	3.3	18

#	Article	IF	Citations
307	Birth and Growth of Octapod-Shaped Colloidal Nanocrystals Studied by Electron Tomography. Journal of Physical Chemistry C, 2011, 115, 20128-20133.	3.1	18
308	In Situ Dynamic Nanostructuring of the Cu–Ti Catalyst-Support System Promotes Hydrogen Evolution under Alkaline Conditions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29583-29592.	8.0	18
309	Microwaveâ€Induced Structural Engineering and Pt Trapping in <i>6R</i> â€TaS ₂ for the Hydrogen Evolution Reaction. Small, 2020, 16, e2003372.	10.0	18
310	Mixed Dimethylammonium/Methylammonium Lead Halide Perovskite Crystals for Improved Structural Stability and Enhanced Photodetection. Advanced Materials, 2022, 34, e2106160.	21.0	18
311	Temperature and Size Dependence of the Optical Properties of Tetrapod-Shaped Colloidal Nanocrystals Exhibiting Type-II Transitions. Journal of Physical Chemistry C, 2011, 115, 18094-18104.	3.1	17
312	Physical Properties of Nanorods. Nanoscience and Technology, 2013, , .	1.5	17
313	Oxygen Sensitivity of Atomically Passivated CdS Nanocrystal Films. ACS Applied Materials & Company (1975) Interfaces, 2014, 6, 9517-9523.	8.0	17
314	A theoretical investigation of the (0001) covellite surfaces. Journal of Chemical Physics, 2014, 141, 044702.	3.0	17
315	Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction. ACS Nano, 2021, 15, 20341-20352.	14.6	17
316	Colloidal Bismuth Chalcohalide Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
317	Halide perovskites and perovskite related materials for particle radiation detection. Nanoscale, 2022, 14, 6743-6760.	5.6	17
318	Confinement effects on optical phonons in spherical, rod-, and tetrapod-shaped nanocrystals detected by Raman spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 483-486.	1.8	16
319	Novel hybrid organic/inorganic 2D quasiperiodic PC: from diffraction pattern to vertical light extraction. Nanoscale Research Letters, 2011, 6, 371.	5.7	16
320	A Roadmap for the Assembly of Polyhedral Particles. Science, 2012, 337, 417-418.	12.6	16
321	Phase diagram of octapod-shaped nanocrystals in a quasi-two-dimensional planar geometry. Journal of Chemical Physics, 2013, 138, 154504.	3.0	16
322	Revealing Photoluminescence Modulation from Layered Halide Perovskite Microcrystals upon Cyclic Compression. Advanced Materials, 2019, 31, e1805608.	21.0	16
323	Cs ₃ Cu ₄ In ₂ Cl ₁₃ Nanocrystals: A Perovskite-Related Structure with Inorganic Clusters at A Sites. Inorganic Chemistry, 2020, 59, 548-554.	4.0	16
324	Fast Intrinsic Emission Quenching in Cs ₄ PbBr ₆ Nanocrystals. Nano Letters, 2021, 21, 8619-8626.	9.1	16

#	Article	IF	Citations
325	Stable CsPbBr ₃ Nanoclusters Feature a Disk-like Shape and a Distorted Orthorhombic Structure. Journal of the American Chemical Society, 2022, 144, 5059-5066.	13.7	16
326	Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystals. Nature Communications, 2022, 13 , .	12.8	16
327	Charge separation in Pt-decorated CdSe@CdS octapod nanocrystals. Nanoscale, 2014, 6, 2238-2243.	5.6	15
328	Nanosized, Hollow, and Mn-Doped CeO ₂ /SiO ₂ Catalysts via Galvanic Replacement: Preparation, Characterization, and Application as Highly Active Catalysts. ACS Applied Nano Materials, 2018, 1, 1438-1443.	5.0	15
329	Intrinsic and Extrinsic Exciton Recombination Pathways in AgInS ₂ Colloidal Nanocrystals. Energy Material Advances, 2021, 2021, .	11.0	15
330	Isolated [SbCl ₆] ^{3–} Octahedra Are the Only Active Emitters in Rb ₇ Sb _{Cl₁₆ Nanocrystals. ACS Energy Letters, 2021, 6, 3952-3959.}	17.4	15
331	Synthesis routes for the growth of complex nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 128-133.	2.7	14
332	Determination of surface properties of various substrates using TiO2 nanorod coatings with tunable characteristics. Journal of Materials Science, 2008, 43, 3474-3480.	3.7	14
333	Hollow Iron Oxide Nanoparticles in Polymer Nanobeads as MRI Contrast Agents. Journal of Physical Chemistry C, 2015, 119, 6246-6253.	3.1	14
334	Solid State Intercalation, Deintercalation, and Cation Exchange in Colloidal 2D Bi ₂ Se ₃ and Bi ₂ Te ₃ Nanocrystals. Chemistry of Materials, 2017, 29, 1419-1429.	6.7	14
335	Metal-support interaction in catalysis: The influence of the morphology of a nano-oxide domain on catalytic activity. Applied Catalysis B: Environmental, 2018, 237, 753-762.	20.2	14
336	Impact of local structure on halogen ion migration in layered methylammonium copper halide memory devices. Journal of Materials Chemistry A, 2020, 8, 17516-17526.	10.3	14
337	Light-Driven Permanent Charge Separation across a Hybrid Zero-Dimensional/Two-Dimensional Interface. Journal of Physical Chemistry C, 2020, 124, 8000-8007.	3.1	14
338	Methylammonium Governs Structural and Optical Properties of Hybrid Lead Halide Perovskites through Dynamic Hydrogen Bonding. Chemistry of Materials, 2021, 33, 8524-8533.	6.7	14
339	Semiconducting and optical properties of selected binary compounds by linear response DFT+U and hybrid functional methods. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	13
340	Direct Quantification of Cu Vacancies and Spatial Localization of Surface Plasmon Resonances in Copper Phosphide Nanocrystals., 2019, 1, 665-670.		13
341	A robust and highly active hydrogen evolution catalyst based on Ru nanocrystals supported on vertically oriented Cu nanoplates. Journal of Materials Chemistry A, 2020, 8, 10787-10795.	10.3	13
342	Why Do We Care about Studying Transformations in Inorganic Nanocrystals?. Accounts of Chemical Research, 2021, 54, 1543-1544.	15.6	13

#	Article	IF	Citations
343	Preparation and characterisation of organic–inorganic heterojunction based on BDA-PPV/CdS nanocrystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 175-179.	3.5	12
344	Formation and characterization of glutamate dehydrogenase monolayers on silicon supports. Biosensors and Bioelectronics, 2005, 21, 30-40.	10.1	12
345	Band-edge ultrafast pump–probe spectroscopy of core/shell CdSe/CdS rods: assessing electron delocalization by effective mass calculations. Physical Chemistry Chemical Physics, 2012, 14, 7420.	2.8	12
346	Triggering Cation Exchange Reactions by Doping. Journal of Physical Chemistry Letters, 2018, 9, 4895-4900.	4.6	12
347	Core/Shell CdSe/CdS Boneâ€6haped Nanocrystals with a Thick and Anisotropic Shell as Optical Emitters. Advanced Optical Materials, 2020, 8, 1901463.	7.3	12
348	Photoluminescence enhancement and high accuracy patterning of lead halide perovskite single crystals by MeV ion beam irradiation. Journal of Materials Chemistry C, 2020, 8, 9923-9930.	5.5	12
349	Optical properties of colloidal nanocrystal spheres and tetrapods. Microelectronics Journal, 2005, 36, 552-554.	2.0	11
350	A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge. Nanotechnology, 2011, 22, 285307.	2.6	11
351	Effect of Morphology on Ultrafast Carrier Dynamics in Asymmetric Gold–Iron Oxide Plasmonic Heterodimers. Journal of Physical Chemistry C, 2012, 116, 26924-26928.	3.1	11
352	Selective antimony reduction initiating the nucleation and growth of InSb quantum dots. Nanoscale, 2018, 10, 11110-11116.	5.6	11
353	Synthesis of yolk–shell Co _{1â^x} Ru _x O ₂ microspheres featuring an enhanced electrocatalytic oxygen evolution activity in acidic medium. Journal of Materials Chemistry A, 2021, 9, 10385-10392.	10.3	11
354	Cation Exchange Protocols to Radiolabel Aqueous Stabilized ZnS, ZnSe, and CuFeS ₂ Nanocrystals with ⁶⁴ Cu for Dual Radio―and Photoâ€Thermal Therapy. Advanced Functional Materials, 2020, 30, 2002362.	14.9	11
355	Exciton transitions in tetrapod-shaped CdTe nanocrystals investigated by photomodulated transmittance spectroscopy. Applied Physics Letters, 2006, 89, 094104.	3.3	10
356	Synthesis and perspectives of complex crystalline nano-structures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1329-1336.	1.8	10
357	Evidence of electron wave function delocalization in CdSe/CdS asymmetric nanocrystals. Superlattices and Microstructures, 2010, 47, 170-173.	3.1	10
358	Spatially resolved photoconductivity of thin films formed by colloidal octapod-shaped CdSe/CdS nanocrystals. Nanoscale, 2011, 3, 2964.	5.6	10
359	Radiofrequency characterization of polydimethylsiloxane – iron oxide based nanocomposites. Microelectronic Engineering, 2013, 111, 46-51.	2.4	10
360	Metastable CdTe@HgTe Core@Shell Nanostructures Obtained by Partial Cation Exchange Evolve into Sintered CdTe Films Upon Annealing. Chemistry of Materials, 2020, 32, 2978-2985.	6.7	10

#	Article	IF	Citations
361	Reversible Emission Tunability from 2Dâ€Layered Perovskites with Conjugated Organic Cations. Advanced Photonics Research, 2021, 2, 2100005.	3.6	10
362	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 441-446.	2.4	9
363	Role of defect states on Auger processes in resonantly pumped CdSe nanorods. Applied Physics Letters, 2007, 91, 093106.	3.3	9
364	Steady-state photoinduced absorption of CdSe/CdS octapod shaped nanocrystals. Physical Chemistry Chemical Physics, 2011, 13, 15326.	2.8	9
365	Tuning the CO oxidation catalytic activity of supported metal–metal oxide heterostructures by an aqueous phase post-treatment process. Journal of Materials Chemistry A, 2016, 4, 18075-18083.	10.3	9
366	HfN Nanoparticles: An Unexplored Catalyst for the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 15610-15616.	2.0	9
367	OD Nanocrystals as Lightâ€Driven, Localized Chargeâ€Injection Sources for the Contactless Manipulation of Atomically Thin 2D Materials. Advanced Photonics Research, 2021, 2, 2000151.	3.6	9
368	Guidelines for the characterization of metal halide nanocrystals. Trends in Chemistry, 2021, 3, 631-644.	8.5	9
369	A novel synthesis of CdSe nanocrystals. Materials Letters, 2004, 58, 2429-2432.	2.6	8
370	Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals. Nanoscale, 2013, 5, 7596.	5.6	8
371	Compression stiffness of porous nanostructures from self-assembly of branched nanocrystals. Nanoscale, 2013, 5, 681-686.	5.6	8
372	Insights into the Structure of Dot@Rod and Dot@Octapod CdSe@CdS Heterostructures. Journal of Physical Chemistry C, 2015, 119, 16338-16348.	3.1	8
373	Ptychographic Imaging of Branched Colloidal Nanocrystals Embedded in Free-Standing Thick Polystyrene Films. Scientific Reports, 2016, 6, 19397.	3.3	8
374	Effects of Oxygen Plasma on the Chemical, Light-Emitting, and Electrical-Transport Properties of Inorganic and Hybrid Lead Bromide Perovskite Nanocrystal Films. ACS Applied Nano Materials, 2018, 1, 5396-5400.	5.0	8
375	Bandgap determination from individual orthorhombic thin cesium lead bromide nanosheets by electron energy-loss spectroscopy. Nanoscale Horizons, 2020, 5, 1610-1617.	8.0	8
376	Hollowing of MnO Nanocrystals Triggered by Metal Cation Replacement: Implications for the Electrocatalytic Oxygen Evolution Reaction. ACS Applied Nano Materials, 2021, 4, 5904-5911.	5.0	8
377	Precipitation of Selenium from CdSe Nanocrystal Solutions. Advanced Materials, 2005, 17, 1321-1324.	21.0	7
378	Synthetic Strategies to Size and Shape Controlled Nanocrystals and Nanocrystal Heterostructures. Advances in Experimental Medicine and Biology, 2007, 620, 1-17.	1.6	7

#	Article	IF	CITATIONS
379	Catalytic and seeded shape-selective synthesis of II–VI semiconductor nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 138-141.	2.7	7
380	Growth mechanism, shape and composition control of semiconductor nanocrystals., 2008, , 1-34.		7
381	Radiative recombination dynamics in tetrapod-shaped CdTe nanocrystals: Evidence for a photoinduced screening of the internal electric field. Applied Physics Letters, 2008, 92, .	3.3	7
382	Spatial analysis of the photocurrent generation and transport in semiconductor nanocrystal films. Physical Review B, 2012, 86, .	3.2	7
383	Germanium Nanocrystals-MWCNTs Composites as Anode Materials for Lithium Ion Batteries. ECS Transactions, 2014, 62, 19-24.	0.5	7
384	Au _{1â^'x} Cu _x colloidal nanoparticles synthesized via a one-pot approach: understanding the temperature effect on the Au : Cu ratio. RSC Advances, 2016, 6, 22213-22221.	3.6	7
385	Selective Fe Promotion on Au Nanoparticles: An Efficient Way to Activate Au/SiO ₂ Catalysts for the CO Oxidation Reaction. ChemCatChem, 2017, 9, 2952-2960.	3.7	7
386	Generation of Free Carriers in MoSe ₂ Monolayers Via Energy Transfer from CsPbBr ₃ Nanocrystals. Advanced Optical Materials, 2022, 10, .	7.3	7
387	Light-Induced Inhibition of Photoluminescence Emission of Core/Shell Semiconductor Nanorods and Its Application for Optical Data Storage. Journal of Physical Chemistry C, 2012, 116, 25576-25580.	3.1	6
388	A lithium ion battery exploiting a composite Fe2O3 anode and a high voltage Li1.35Ni0.48Fe0.1Mn1.72O4 cathode. RSC Advances, 0, , .	3.6	6
389	From Capacitance-Controlled to Diffusion-Controlled Electrochromism in Nb-Doped TiO ₂ Nanocrystalline Electrodes. ECS Transactions, 2017, 77, 1671-1679.	0.5	6
390	Design of catalytically active porous gold structures from a bottom-up method: The role of metal traces in CO oxidation and oxidative coupling of methanol. Journal of Catalysis, 2019, 375, 279-286.	6.2	6
391	Shape Dependence of the Scattering Processes of Optical Phonons in Colloidal Nanocrystals Detected by Raman Spectroscopy. Journal of Nanoelectronics and Optoelectronics, 2006, 1, 104-107.	0.5	6
392	Red-emissive nanocrystals of Cs ₄ Mn _{<i>x</i>} Cd _{1â^²<i>x</i>} Sb ₂ Cl ₁₂ layered perovskites. Nanoscale, 2022, 14, 305-311.	5.6	6
393	Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction: The emblematic case of "inert―ZrSe ₂ as catalyst for electrolyzers. Nano Select, 2022, 3, 1069-1081.	3.7	6
394	Shell thickness dependence of exciton trapping in colloidal core/shell nanorods. Journal of Luminescence, 2008, 128, 361-365.	3.1	5
395	Evidence for an internal field in CdSe/CdS nanorods by time resolved and single rod experiments. Superlattices and Microstructures, 2010, 47, 174-177.	3.1	5
396	Assembly of Branched Colloidal Nanocrystals in Polymer Films Leads to Enhanced Viscous Deformation Resistance. Nano Letters, 2016, 16, 6154-6163.	9.1	5

#	Article	IF	CITATIONS
397	Interplay of Internal Structure and Interfaces on the Emitting Properties of Hybrid ZnO Hierarchical Particles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15182-15191.	8.0	5
398	Colloidal Bismuth Chalcohalide Nanocrystals. Angewandte Chemie, 2022, 134, .	2.0	5
399	Dynamic orientational photorefractive gratings observed in CdSe/CdS nanorods imbedded in liquid crystal cells. Optical Materials, 2010, 32, 1060-1065.	3.6	4
400	GHz Properties of Magnetophoretically Aligned Iron-Oxide Nanoparticle Doped Polymers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2908-2914.	8.0	4
401	Mechanical switching of orientation-related photoluminescence in deep-blue 2D layered perovskite ensembles. Nanoscale, 2021, 13, 3948-3956.	5.6	4
402	Polarized single photon emission for quantum cryptography based on colloidal nanocrystals. , 2009, , .		3
403	DYNAMIC ORIENTATIONAL PHOTO-REFRACTIVE GRATINGS OBSERVED IN CdSe/CdS NANORODS DOPED NEMATIC LIQUID CRYSTAL CELLS. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 111-121.	1.8	3
404	Luminescent Solar Concentrators utilising aligned CdSe/CdS nanorods. , 2011, , .		3
405	Optical Properties of Semiconductor Nanorods. Nanoscience and Technology, 2013, , 7-55.	1.5	3
406	Atmosphere-Induced Transient Structural Transformations of Pd–Cu and Pt–Cu Alloy Nanocrystals. Chemistry of Materials, 2021, 33, 8635-8648.	6.7	3
407	Quantum Dots. , 0, , 4-49.		2
408	Tailoring the emission spectrum of colloidal nanocrystals by means of lithographically-imprinted hybrid vertical microcavities., 2005, 5840, 168.		2
409	Role of defect states on electrical and optical properties in CdSe nanorod thin films. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2063-2065.	2.7	2
410	The influence of intrinsic and surface states on the emission properties of colloidal nanocrystals. Superlattices and Microstructures, 2008, 43, 528-531.	3.1	2
411	Interconnection of specific nano-objects by electron beam lithography — A controllable method. Materials Science and Engineering C, 2008, 28, 299-302.	7.3	2
412	Electron microscopy studies of electronâ€beam sensitive PbTeâ€based nanostructures. Microscopy Research and Technique, 2010, 73, 944-951.	2.2	2
413	Magnetic Properties of Nanorods. Nanoscience and Technology, 2013, , 133-213.	1.5	2
414	Highly luminescent, flexible and biocompatible cadmium-based nanocomposites. Microelectronic Engineering, 2013, 111, 299-303.	2.4	2

#	Article	IF	CITATIONS
415	Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy. , 2014, , .		2
416	Bottom-Up Synthesis of Nanosized Objects. , 2014, , 47-80.		2
417	Nano- and microscale apertures in metal films fabricated by colloidal lithography with perovskite nanocrystals. Nanotechnology, 2020, 31, 185304.	2.6	2
418	Detection of Pb ²⁺ traces in dispersion of Cs ₄ PbBr ₆ nanocrystals by <i>in situ</i> liquid cell transmission electron microscopy. Nanoscale, 2021, 13, 2317-2323.	5.6	2
419	X-ray ptychographic mode of self-assembled CdSe/CdS octapod-shaped nanocrystals in thick polymers. Journal of Applied Crystallography, 2020, 53, 741-747.	4.5	2
420	Luminescent Solar Concentrators. , 2010, , 323-349.		2
421	An <i>ab initio</i> study of the magnetic–metallic CoPt ₃ –Au interfaces. Journal of Physics Condensed Matter, 2009, 21, 015001.	1.8	1
422	Novel hybrid organic/inorganic 2D photonic quasicrystals with 8-fold and 12-fold diffraction symmetries. , 2012, , .		1
423	Antibody-Functionalized Inorganic NPs: Mimicking Nature for Targeted Diagnosis and Therapy. , 2014, , 1-28.		1
424	Manipulating the morphology of the nano oxide domain in AuCu–iron oxide dumbbell-like nanocomposites as a tool to modify magnetic properties. RSC Advances, 2018, 8, 22411-22421.	3.6	1
425	Ultrafast carrier dynamics in spherical CdSe core/elongated CdS shell nanocrystals. Springer Series in Chemical Physics, 2009, , 289-291.	0.2	1
426	Nanoparticles and Nanostructures for Biophotonic Applications. , 0, , .		1
427	Bottom-up synthesis of nanosized objects. , 2022, , 85-123.		1
428	Hybrid Lasers Based on CdSe/CdS Core/Shell Colloidal Quantum Rods on Silica Microspheres. , 2012, , .		0
429	Editorial: Plasmonic sensors. Annalen Der Physik, 2012, 524, A155-A155.	2.4	O
430	Electrical Properties of Nanorods. Nanoscience and Technology, 2013, , 57-85.	1.5	0
431	Catalytic Properties of Nanorods. Nanoscience and Technology, 2013, , 215-240.	1.5	0
432	Nanoantenna Enhanced Terahertz Spectroscopy of a Monolayer of Cadmium Selenide Quantum Dots., 2014,,.		0

#	Article	IF	CITATIONS
433	Thermally Driven Cation Exchange at Solid State between Cu2Se and CdSe Nanocrystals: an In-Situ TEM Study. Microscopy and Microanalysis, 2015, 21, 947-948.	0.4	O
434	Beyond Conventional Quantum Dots. ChemPhysChem, 2016, 17, 553-554.	2.1	0
435	Large polaron evidence in the ultrafast THz response of Lead-Halide Perovskites. EPJ Web of Conferences, 2019, 205, 04019.	0.3	0
436	Fluorination suppresses thermal quenching in perovskite QLEDs. Science China Chemistry, 2021, 64, 1113-1114.	8.2	0
437	Fluorescent Nanocrystals and Proteins. Nanostructure Science and Technology, 2009, , 225-254.	0.1	0
438	Colloidal Inorganic Nanocrystals. , 2012, , 251-281.		0
439	Nanostructures for Photonics. , 2016, , 2827-2843.		0