
Pat Stayton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/928105/publications.pdf Version: 2024-02-01

ΡΑΤ ΥΤΑΥΤΟΝ

#	Article	IF	CITATIONS
1	Wellâ€Defined Mannosylated Polymer for Peptide Vaccine Delivery with Enhanced Antitumor Immunity. Advanced Healthcare Materials, 2022, 11, e2101651.	3.9	24
2	A nanofiber based antiviral (TAF) prodrug delivery system. Materials Science and Engineering C, 2022, 133, 112626.	3.8	1
3	In vivo tracking of bioorthogonally labeled T-cells for predicting therapeutic efficacy of adoptive T-cell therapy. Journal of Controlled Release, 2021, 329, 223-236.	4.8	15
4	Fully synthetic injectable depots with high drug content and tunable pharmacokinetics for long-acting drug delivery. Journal of Controlled Release, 2021, 329, 257-269.	4.8	11
5	A macrophage-targeted platform for extending drug dosing with polymer prodrugs for pulmonary infection prophylaxis. Journal of Controlled Release, 2021, 330, 284-292.	4.8	10
6	Lytic Polyplex Vaccines Enhance Antigenâ€ S pecific Cytotoxic T Cell Response through Induction of Local Cell Death. Advanced Therapeutics, 2021, 4, 2100005.	1.6	5
7	Liver-targeted polymeric prodrugs of 8-aminoquinolines for malaria radical cure. Journal of Controlled Release, 2021, 331, 213-227.	4.8	6
8	Arming Immune Cell Therapeutics with Polymeric Prodrugs. Advanced Healthcare Materials, 2021, , 2101944.	3.9	1
9	Mannose Conjugated Polymer Targeting <i>P.Âaeruginosa</i> Biofilms. ACS Infectious Diseases, 2020, 6, 2866-2871.	1.8	9
10	Applications of "Smart Polymers―as Biomaterials. , 2020, , 191-203.		5
11	Think Small for Big Impact. Advanced Functional Materials, 2020, 30, 1909678.	7.8	о
12	Glycan targeted polymeric antibiotic prodrugs for alveolar macrophage infections. Biomaterials, 2019, 195, 38-50.	5.7	38
13	Radiant star nanoparticle prodrugs for the treatment of intracellular alveolar infections. Polymer Chemistry, 2018, 9, 2134-2146.	1.9	9
14	Fully synthetic macromolecular prodrug chemotherapeutics with EGFR targeting and controlled camptothecin release kinetics. Polymer Chemistry, 2018, 9, 5224-5233.	1.9	13
15	Polymer-augmented liposomes enhancing antibiotic delivery against intracellular infections. Biomaterials Science, 2018, 6, 1976-1985.	2.6	47
16	Temperature-Responsive Magnetic Nanoparticles for Enabling Affinity Separation of Extracellular Vesicles. ACS Applied Materials & Interfaces, 2018, 10, 33847-33856.	4.0	31
17	Macrophage-targeted drugamers with enzyme-cleavable linkers deliver high intracellular drug dosing and sustained drug pharmacokinetics against alveolar pulmonary infections. Journal of Controlled Release, 2018, 287, 1-11.	4.8	48
18	Enzyme-Cleavable Polymeric Micelles for the Intracellular Delivery of Proapoptotic Peptides. Molecular Pharmaceutics, 2017, 14, 1450-1459.	2.3	47

#	Article	IF	CITATIONS
19	Synthetic Macromolecular Antibiotic Platform for Inhalable Therapy against Aerosolized Intracellular Alveolar Infections. Molecular Pharmaceutics, 2017, 14, 1988-1997.	2.3	20
20	Core-Cross-Linked Nanoparticles Reduce Neuroinflammation and Improve Outcome in a Mouse Model of Traumatic Brain Injury. ACS Nano, 2017, 11, 8600-8611.	7.3	91
21	Orientation and conformation of osteocalcin adsorbed onto calcium phosphate and silica surfaces. Biointerphases, 2017, 12, 02D411.	0.6	10
22	Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. ELife, 2016, 5, .	2.8	65
23	Theranostic Oxygen Reactive Polymers for Treatment of Traumatic Brain Injury. Advanced Functional Materials, 2016, 26, 4124-4133.	7.8	38
24	Nanostructured glycopolymer augmented liposomes to elucidate carbohydrate-mediated targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2031-2041.	1.7	25
25	A Streptavidin Binding Site Mutation Yields an Unexpected Result: An Ionized Asp128 Residue Is Not Essential for Strong Biotin Binding. Biochemistry, 2016, 55, 5201-5203.	1.2	5
26	A Stimuli-Responsive, Binary Reagent System for Rapid Isolation of Protein Biomarkers. Analytical Chemistry, 2016, 88, 10404-10410.	3.2	14
27	pH and Salt Effects on Surface Activity and Self-Assembly of Copolymers Containing a Weak Polybase. Langmuir, 2016, 32, 9286-9292.	1.6	7
28	Synthesis of zwitterionic, hydrophobic, and amphiphilic polymers via RAFT polymerization induced self-assembly (PISA) in acetic acid. Polymer Chemistry, 2016, 7, 6133-6143.	1.9	19
29	Reloadable multidrug capturing delivery system for targeted ischemic disease treatment. Science Translational Medicine, 2016, 8, 365ra160.	5.8	19
30	Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS. Biointerphases, 2016, 11, 02A304.	0.6	19
31	Chemotherapeutic copolymers prepared via the RAFT polymerization of prodrug monomers. Polymer Chemistry, 2016, 7, 4494-4505.	1.9	19
32	RAFT polymerization of ciprofloxacin prodrug monomers for the controlled intracellular delivery of antibiotics. Polymer Chemistry, 2016, 7, 826-837.	1.9	45
33	Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget, 2016, 7, 9561-9575.	0.8	46
34	Enhancement of MHC-I Antigen Presentation via Architectural Control of pH-Responsive, Endosomolytic Polymer Nanoparticles. AAPS Journal, 2015, 17, 358-369.	2.2	52
35	Intracellular Delivery System for Antibody–Peptide Drug Conjugates. Molecular Therapy, 2015, 23, 907-917.	3.7	33
36	Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific. Nanoscale, 2015, 7, 15863-15872.	2.8	74

Pat Stayton

#	Article	IF	CITATIONS
37	Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery. Journal of Controlled Release, 2015, 219, 345-354.	4.8	48
38	Well-defined single polymer nanoparticles for the antibody-targeted delivery of chemotherapeutic agents. Polymer Chemistry, 2015, 6, 1286-1299.	1.9	18
39	Stimuli-Responsive Reagent System for Enabling Microfluidic Immunoassays with Biomarker Purification and Enrichment. Bioconjugate Chemistry, 2015, 26, 29-38.	1.8	28
40	Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes. Polymer Chemistry, 2015, 6, 1255-1266.	1.9	34
41	Improving Lateral-Flow Immunoassay (LFIA) Diagnostics via Biomarker Enrichment for mHealth. Methods in Molecular Biology, 2015, 1256, 71-84.	0.4	4
42	Design of Smart Nanogels that Respond to Physiologically Relevant pH Values and Temperatures. Journal of Nanoscience and Nanotechnology, 2014, 14, 2557-2562.	0.9	7
43	Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8+ T cell responses. Journal of Controlled Release, 2014, 191, 24-33.	4.8	119
44	Synthesis and characterization of transferrin-targeted chemotherapeutic delivery systems prepared via RAFT copolymerization of high molecular weight PEG macromonomers. Polymer Chemistry, 2014, 5, 1791-1799.	1.9	27
45	A Computationally Designed Inhibitor of an Epstein-Barr Viral Bcl-2 Protein Induces Apoptosis in Infected Cells. Cell, 2014, 157, 1644-1656.	13.5	118
46	Organic nanoparticles for drug delivery and imaging. MRS Bulletin, 2014, 39, 219-223.	1.7	77
47	Stimuli-Responsive Bioconjugate. , 2014, , 1-13.		0
48	A Photoinduced Nanoparticle Separation in Microchannels via pH-Sensitive Surface Traps. Langmuir, 2013, 29, 5388-5393.	1.6	22
49	Targeting. , 2013, , 1028-1036.		1
50	Melittin-grafted HPMA-oligolysine based copolymers for gene delivery. Biomaterials, 2013, 34, 2318-2326.	5.7	57
51	Stimuli-Responsive Polymer-Antibody Conjugates via RAFT and Tetrafluorophenyl Active Ester Chemistry. ACS Macro Letters, 2013, 2, 132-136.	2.3	31
52	Polymer–trimannoside conjugates via a combination of RAFT and thiol–ene chemistry. Polymer Chemistry, 2013, 4, 1153-1160.	1.9	21
53	Neutral Polymeric Micelles for RNA Delivery. Bioconjugate Chemistry, 2013, 24, 398-407.	1.8	42
54	pH-Responsive Nanoparticle Vaccines for Dual-Delivery of Antigens and Immunostimulatory Oligonucleotides. ACS Nano, 2013, 7, 3912-3925.	7.3	280

#	Article	IF	CITATIONS
55	Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction. Journal of Controlled Release, 2013, 170, 287-294.	4.8	112
56	Structural consequences of cutting a binding loop: two circularly permuted variants of streptavidin. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 968-977.	2.5	6
57	TOF-SIMS 3D Imaging of Native and Non-Native Species within HeLa Cells. Analytical Chemistry, 2013, 85, 10869-10877.	3.2	75
58	pHâ€Responsive Hyperbranched Copolymers from Oneâ€Pot RAFT Copolymerization. Macromolecular Materials and Engineering, 2012, 297, 1175-1183.	1.7	10
59	Second-Contact Shell Mutation Diminishes Streptavidin–Biotin Binding Affinity through Transmitted Effects on Equilibrium Dynamics. Biochemistry, 2012, 51, 597-607.	1.2	7
60	Probing the Orientation of Electrostatically Immobilized Protein G B1 by Time-of-Flight Secondary Ion Spectrometry, Sum Frequency Generation, and Near-Edge X-ray Adsorption Fine Structure Spectroscopy. Langmuir, 2012, 28, 2107-2112.	1.6	52
61	Preface to the Chemistry of Materials Special Issue: Materials for Biological Applications. Chemistry of Materials, 2012, 24, 727-727.	3.2	2
62	Application of Living Free Radical Polymerization for Nucleic Acid Delivery. Accounts of Chemical Research, 2012, 45, 1089-1099.	7.6	111
63	Intracellular Delivery and Trafficking Dynamics of a Lymphoma-Targeting Antibody–Polymer Conjugate. Molecular Pharmaceutics, 2012, 9, 3506-3514.	2.3	38
64	Multiplexed Enrichment and Detection of Malarial Biomarkers Using a Stimuli-Responsive Iron Oxide and Gold Nanoparticle Reagent System. ACS Nano, 2012, 6, 6776-6785.	7.3	115
65	Diblock copolymers with tunable pH transitions for gene delivery. Biomaterials, 2012, 33, 2301-2309.	5.7	104
66	Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials, 2012, 33, 6868-6876.	5.7	111
67	In vivo targeting of alveolar macrophages via RAFT-based glycopolymers. Biomaterials, 2012, 33, 6889-6897.	5.7	67
68	pH-responsive polymer–antigen vaccine bioconjugates. Polymer Chemistry, 2011, 2, 1499.	1.9	33
69	Synthesis of Folate-Functionalized RAFT Polymers for Targeted siRNA Delivery. Biomacromolecules, 2011, 12, 2708-2714.	2.6	56
70	RAFT-synthesized graft copolymers that enhance pH-dependent membrane destabilization and protein circulation times. Journal of Controlled Release, 2011, 155, 167-174.	4.8	31
71	Streptavidin and its biotin complex at atomic resolution. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 813-821.	2.5	83
72	ToFâ€&IMS imaging and depth profiling of HeLa cells treated with bromodeoxyuridine. Surface and Interface Analysis, 2011, 43, 354-357.	0.8	47

#	Article	IF	CITATIONS
73	Differential monocyte/macrophage interleukinâ€1β production due to biomaterial topography requires the β2 integrin signaling pathway. Journal of Biomedical Materials Research - Part A, 2011, 96A, 162-169.	2.1	31
74	Probing orientation of immobilized humanized antiâ€lysozyme variable fragment by timeâ€ofâ€flight secondaryâ€ion mass spectrometry. Journal of Biomedical Materials Research - Part A, 2011, 97A, 1-7.	2.1	25
75	Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials, 2011, 32, 2407-2416.	5.7	235
76	Efficient intracellular delivery of a pro-apoptotic peptide with a pH-responsive carrier. Reactive and Functional Polymers, 2011, 71, 261-265.	2.0	21
77	Anti-CD22 Antibody Targeting of pH-responsive Micelles Enhances Small Interfering RNA Delivery and Gene Silencing in Lymphoma Cells. Molecular Therapy, 2011, 19, 1529-1537.	3.7	56
78	Pretargeted Radioimmunotherapy Using Genetically Engineered Antibody-Streptavidin Fusion Proteins for Treatment of Non-Hodgkin Lymphoma. Clinical Cancer Research, 2011, 17, 7373-7382.	3.2	25
79	Biomaterial topography alters healing <i>in vivo</i> and monocyte/macrophage activation <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2010, 95A, 649-657.	2.1	162
80	The role of basic amino acids in the molecular recognition of hydroxyapatite by statherin using solid state NMR. Surface Science, 2010, 604, L39-L42.	0.8	35
81	Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials, 2010, 31, 6772-6781.	5.7	282
82	"Smart―Diblock Copolymers as Templates for Magnetic-Core Gold-Shell Nanoparticle Synthesis. Nano Letters, 2010, 10, 85-91.	4.5	64
83	Probing the Orientation of Surface-Immobilized Protein G B1 Using ToF-SIMS, Sum Frequency Generation, and NEXAFS Spectroscopy. Langmuir, 2010, 26, 16434-16441.	1.6	83
84	Synthesis of Statistical Copolymers Containing Multiple Functional Peptides for Nucleic Acid Delivery. Biomacromolecules, 2010, 11, 3007-3013.	2.6	38
85	Mixed Stimuli-Responsive Magnetic and Gold Nanoparticle System for Rapid Purification, Enrichment, and Detection of Biomarkers. Bioconjugate Chemistry, 2010, 21, 2197-2204.	1.8	70
86	Intracellular Delivery of a Proapoptotic Peptide via Conjugation to a RAFT Synthesized Endosomolytic Polymer. Molecular Pharmaceutics, 2010, 7, 468-476.	2.3	94
87	Simple Fluidic System for Purifying and Concentrating Diagnostic Biomarkers Using Stimuli-Responsive Antibody Conjugates and Membranes. Bioconjugate Chemistry, 2010, 21, 1820-1826.	1.8	49
88	pH-Responsive Polymeric siRNA Carriers Sensitize Multidrug Resistant Ovarian Cancer Cells to Doxorubicin via Knockdown of Polo-like Kinase 1. Molecular Pharmaceutics, 2010, 7, 442-455.	2.3	87
89	A Distal Point Mutation in the Streptavidinâ^'Biotin Complex Preserves Structure but Diminishes Binding Affinity: Experimental Evidence of Electronic Polarization Effects?. Biochemistry, 2010, 49, 4568-4570.	1.2	9
90	pH-Responsive Polymeric Micelle Carriers for siRNA Drugs. Biomacromolecules, 2010, 11, 2904-2911.	2.6	209

#	Article	IF	CITATIONS
91	Laboratory-scale protein striping system for patterning biomolecules onto paper-based immunochromatographic test strips. Lab on A Chip, 2010, 10, 2279.	3.1	29
92	Injectable pH- and Temperature-Responsive Poly(N-isopropylacrylamide- <i>co</i> -propylacrylic acid) Copolymers for Delivery of Angiogenic Growth Factors. Biomacromolecules, 2010, 11, 1833-1839.	2.6	165
93	A helical flow, circular microreactor for separating and enriching "smart―polymer–antibody capture reagents. Lab on A Chip, 2010, 10, 3130.	3.1	33

Thermosensitive Liposomes Modified with Poly(<i>N</i>-isopropylacrylamide-<i>co</i>-propylacrylic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

95	Intracellular Delivery of a Protein Antigen with an Endosomal-Releasing Polymer Enhances CD8 T-Cell Production and Prophylactic Vaccine Efficacy. Bioconjugate Chemistry, 2010, 21, 2205-2212.	1.8	118
96	Multitechnique characterization of adsorbed peptide and protein orientation: LK310 and Protein G B1. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C5D1-C5D8.	0.6	25
97	Development of a novel endosomolytic diblock copolymer for siRNA delivery. Journal of Controlled Release, 2009, 133, 221-229.	4.8	367
98	<i>In Situ</i> Characterization of the Degradation of PLGA Microspheres in Hyaluronic Acid Hydrogels by Optical Coherence Tomography. IEEE Transactions on Medical Imaging, 2009, 28, 74-81.	5.4	24
99	Retention and biodistribution of microspheres injected into ischemic myocardium. Journal of Biomedical Materials Research - Part A, 2009, 88A, 704-710.	2.1	36
100	Antigen Delivery with Poly(Propylacrylic Acid) Conjugation Enhances MHC-1 Presentation and T-Cell Activation. Bioconjugate Chemistry, 2009, 20, 241-248.	1.8	77
101	A ¹³ C{ ³¹ P} REDOR NMR Investigation of the Role of Glutamic Acid Residues in Statherin- Hydroxyapatite Recognition. Langmuir, 2009, 25, 12136-12143.	1.6	41
102	End-Functionalized Polymers and Junction-Functionalized Diblock Copolymers Via RAFT Chain Extension with Maleimido Monomers. Bioconjugate Chemistry, 2009, 20, 1122-1128.	1.8	46
103	Photo-Cross-Linked Hydrogels from Thermoresponsive PEGMEMA-PPGMA-EGDMA Copolymers Containing Multiple Methacrylate Groups: Mechanical Property, Swelling, Protein Release, and Cytotoxicity. Biomacromolecules, 2009, 10, 2895-2903.	2.6	69
104	Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab on A Chip, 2009, 9, 1997.	3.1	77
105	Heparin-regulated delivery of osteoprotegerin promotes vascularization of implanted hydrogels. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1021-1034.	1.9	34
106	Mechanistic analysis of macrophage response to IRAK-1 gene knockdown by a smart polymer-antisense oligonucleotide therapeutic. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1333-1346.	1.9	7
107	Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging. Journal of Biomedical Optics, 2008, 13, 014025.	1.4	104
108	Stabilized Micellar Formulation of Indocyanine Green for Near-Infrared Imaging. , 2008, , .		0

Pat Stayton

#	Article	IF	CITATIONS
109	"Smart―pH-Responsive Carriers for Intracellular Delivery of Biomolecular Drugs. Fundamental Biomedical Technologies, 2008, , 143-159.	0.2	5
110	Design of "Smart" Nano-Scale Delivery Systems for Biomolecular Therapeutics. Journal of Biomedical Nanotechnology, 2007, 3, 213-217.	0.5	18
111	DEVELOPMENT OF AN INJECTABLE PH- AND TEMPERATURE-RESPONSIVE HYDROGEL DRUG DELIVERY SYSTEM Journal of Investigative Medicine, 2007, 55, S113.	0.7	1
112	Formation of a Novel Heparin-Based Hydrogel in the Presence of Heparin-Binding Biomolecules. Biomacromolecules, 2007, 8, 1979-1986.	2.6	153
113	Dual Magnetic-/Temperature-Responsive Nanoparticles for Microfluidic Separations and Assays. Langmuir, 2007, 23, 7385-7391.	1.6	156
114	Thermodynamic Roles of Basic Amino Acids in Statherin Recognition of Hydroxyapatite. Biochemistry, 2007, 46, 4725-4733.	1.2	62
115	The structure, dynamics, and energetics of protein adsorption—lessons learned from adsorption of statherin to hydroxyapatite. Magnetic Resonance in Chemistry, 2007, 45, S32-S47.	1.1	44
116	Solid state NMR studies of molecular recognition at protein–mineral interfaces. Progress in Nuclear Magnetic Resonance Spectroscopy, 2007, 50, 71-85.	3.9	50
117	Conjugates of stimuli-responsive polymers and proteins. Progress in Polymer Science, 2007, 32, 922-932.	11.8	290
118	Internalization of novel non-viral vector TAT-streptavidin into human cells. BMC Biotechnology, 2007, 7, 1.	1.7	119
119	Synthesis of Monodisperse Biotinylated p(NIPAAm)-Coated Iron Oxide Magnetic Nanoparticles and their Bioconjugation to Streptavidin. Langmuir, 2007, 23, 6299-6304.	1.6	133
120	Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and †smart' polymers. Radiation Physics and Chemistry, 2007, 76, 1409-1413.	1.4	69
121	Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab on A Chip, 2006, 6, 843.	3.1	124
122	PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 187-197.	1.9	137
123	pH-Responsive Poly(styrene-alt-maleic anhydride) Alkylamide Copolymers for Intracellular Drug Delivery. Biomacromolecules, 2006, 7, 2407-2414.	2.6	203
124	Controlling the Aggregation of Conjugates of Streptavidin with Smart Block Copolymers Prepared via the RAFT Copolymerization Technique. Biomacromolecules, 2006, 7, 2736-2741.	2.6	131
125	Cooperative hydrogen bond interactions in the streptavidin-biotin system. Protein Science, 2006, 15, 459-467.	3.1	123
126	Thermodynamics of Statherin Adsorption onto Hydroxyapatite. Biochemistry, 2006, 45, 5576-5586.	1.2	74

#	Article	IF	CITATIONS
127	Homonuclear and Heteronuclear NMR Studies of a Statherin Fragment Bound to Hydroxyapatite Crystals. Journal of Physical Chemistry B, 2006, 110, 9324-9332.	1.2	50
128	A Solid-State NMR Study of the Dynamics and Interactions of Phenylalanine Rings in a Statherin Fragment Bound to Hydroxyapatite Crystals. Journal of the American Chemical Society, 2006, 128, 5364-5370.	6.6	53
129	Poly(N-isopropylacrylamide-co-propylacrylic acid) Copolymers That Respond Sharply to Temperature and pH. Biomacromolecules, 2006, 7, 1381-1385.	2.6	379
130	Micro and Nanoscale Smart Polymer Technologies in Biomedicine. , 2006, , 289-304.		2
131	Folding of the C-terminal bacterial binding domain in statherin upon adsorption onto hydroxyapatite crystals. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16083-16088.	3.3	88
132	188. Internalization of Novel Delivery Vector TAT-Streptavidin into Human Cells. Molecular Therapy, 2006, 13, S73.	3.7	1
133	In Vivo Imaging of Bone Regeneration Induced by Angiogenic and Osteoinductive Hydrogel Scaffolds. , 2006, , .		Ο
134	Control of cavitation-induced hemolysis with a surface-active polymer. Acoustics Research Letters Online: ARLO, 2005, 6, 201-206.	0.7	0
135	Solid-State NMR Structural Studies of Peptides Immobilized on Gold Nanoparticles. Langmuir, 2005, 21, 3002-3007.	1.6	32
136	Design and development of polymers for gene delivery. Nature Reviews Drug Discovery, 2005, 4, 581-593.	21.5	2,279
137	'Smart' delivery systems for biomolecular therapeutics. Orthodontics and Craniofacial Research, 2005, 8, 219-225.	1.2	82
138	Rational design of composition and activity correlations for pH-sensitive and glutathione-reactive polymer therapeutics. Journal of Controlled Release, 2005, 101, 47-58.	4.8	73
139	Erratum to "Rational design of composition and activity correlations for pH-sensitive and glutathione-reactive polymer therapeutics―[J. Control. Release 101 (1–3) (2005) 47–58]. Journal of Controlled Release, 2005, 104, 415.	4.8	5
140	Rational design of composition and activity correlations for pH-responsive and glutathione-reactive polymer therapeutics. Journal of Controlled Release, 2005, 104, 417-427.	4.8	46
141	Smart Polymer-Streptavidin Conjugates. ChemInform, 2005, 36, no.	0.1	Ο
142	Dual-affinity avidin molecules. Proteins: Structure, Function and Bioinformatics, 2005, 61, 597-607.	1.5	27
143	Poly(propylacrylic acid)-mediated serum stabilization of cationic lipoplexes. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 163-179.	1.9	16
144	Design and Construction of Highly Stable, Protease-resistant Chimeric Avidins. Journal of Biological Chemistry, 2005, 280, 10228-10233.	1.6	47

#	Article	IF	CITATIONS
145	A TAT–streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells. Protein Engineering, Design and Selection, 2005, 18, 147-152.	1.0	49
146	Semi-interpenetrating network of poly(ethylene glycol) and poly(D, L-lactide) for the controlled delivery of protein drugs. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 189-201.	1.9	10
147	Monocyte activation on polyelectrolyte multilayers. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 237-251.	1.9	21
148	Smart polymeric carriers for enhanced intracellular delivery of therapeutic macromolecules. Expert Opinion on Biological Therapy, 2005, 5, 23-32.	1.4	70
149	Intelligent Biohybrid Materials for Therapeutic and Imaging Agent Delivery. Proceedings of the IEEE, 2005, 93, 726-736.	16.4	28
150	Role of Biotin-Binding Affinity in Streptavidin-Based Pretargeted Radioimmunotherapy of Lymphoma. Bioconjugate Chemistry, 2005, 16, 131-138.	1.8	24
151	A REDOR NMR Study of a Phosphorylated Statherin Fragment Bound to Hydroxyapatite Crystals. Journal of the American Chemical Society, 2005, 127, 9350-9351.	6.6	58
152	Effect of polymer surface activity on cavitation nuclei stability against dissolution. Journal of the Acoustical Society of America, 2004, 116, 721-728.	0.5	11
153	Hyaluronic acid grafting mitigates calcification of glutaraldehyde-fixed bovine pericardium. Journal of Biomedical Materials Research Part B, 2004, 70A, 328-334.	3.0	56
154	"Smart―mobile affinity matrix for microfluidic immunoassays. Lab on A Chip, 2004, 4, 412-415.	3.1	84
155	Some personal reflections on the career of Allan Hoffman in honor of his 70th birthday. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 379-384.	1.9	0
156	Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1405-1421.	1.9	71
157	Reversible Meso-Scale Smart Polymerâ^'Protein Particles of Controlled Sizes. Bioconjugate Chemistry, 2004, 15, 747-753.	1.8	104
158	Anti-inflammatory drug delivery from hyaluronic acid hydrogels. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1111-1119.	1.9	98
159	Bioconjugates of smart polymers and proteins: synthesis and applications. Macromolecular Symposia, 2004, 207, 139-152.	0.4	174
160	Smart Polymer–Streptavidin Conjugates. , 2004, 283, 037-044.		10
161	Antibiotic Treatment in a Murine Model of Sepsis: Impact on Cytokines and Endotoxin Release. Shock, 2004, 21, 115-120.	1.0	86
162	A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. Journal of Controlled Release, 2003, 93, 105-120.	4.8	240

#	Article	IF	CITATIONS
163	Delivering the vaccination mail. Trends in Biotechnology, 2003, 21, 465-467.	4.9	5
164	Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. Journal of Controlled Release, 2003, 89, 365-374.	4.8	220
165	Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. Journal of Biomedical Materials Research Part B, 2003, 67A, 69-77.	3.0	63
166	Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. Journal of Biomedical Materials Research Part B, 2003, 66A, 586-595.	3.0	195
167	Structural characterization and comparison of RGD cell-adhesion recognition sites engineered into streptavidin. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 828-834.	2.5	14
168	Structural studies of hydrogen bonds in the high-affinity streptavidin–biotin complex: mutations of amino acids interacting with the ureido oxygen of biotin. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1567-1573.	2.5	17
169	Temperature-Induced Switching of Enzyme Activity with Smart Polymerâ^Enzyme Conjugates. Bioconjugate Chemistry, 2003, 14, 517-525.	1.8	142
170	Bioinspired pH-Responsive Polymers for the Intracellular Delivery of Biomolecular Drugs. Bioconjugate Chemistry, 2003, 14, 412-419.	1.8	219
171	A Smart Microfluidic Affinity Chromatography Matrix Composed of Poly(N-isopropylacrylamide)-Coated Beads. Analytical Chemistry, 2003, 75, 2943-2949.	3.2	132
172	Affinity Thermoprecipitation and Recovery of Biotinylated Biomolecules via a Mutant Streptavidinâ^'Smart Polymer Conjugate. Bioconjugate Chemistry, 2003, 14, 575-580.	1.8	49
173	STRUCTURALSTUDIES OFBIOMATERIALSUSINGDOUBLE-QUANTUMSOLID-STATENMR SPECTROSCOPY. Annual Review of Physical Chemistry, 2003, 54, 531-571.	4.8	68
174	Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochemical Journal, 2003, 372, 65-75.	1.7	205
175	M <scp>olecular</scp> R <scp>ecognition at the</scp> P <scp>rotein-</scp> H <scp>ydroxyapatite</scp> I <scp>nterface</scp> . Critical Reviews in Oral Biology and Medicine, 2003, 14, 370-376.	4.4	104
176	Photoresponsive polymer-enzyme switches. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16592-16596.	3.3	308
177	Theoretical and Experimental Studies of Biotin Analogues That Bind Almost as Tightly to Streptavidin as Biotin. Journal of Organic Chemistry, 2002, 67, 1827-1837.	1.7	25
178	A Streptavidinâ^'Biotin Binding System That Minimizes Blocking by Endogenous Biotin. Bioconjugate Chemistry, 2002, 13, 588-598.	1.8	51
179	A Biomimetic pH-Responsive Polymer Directs Endosomal Release and Intracellular Delivery of an Endocytosed Antibody Complex. Bioconjugate Chemistry, 2002, 13, 996-1001.	1.8	140
180	Molecular Basis for Asymmetrical Growth in Two-Dimensional Streptavidin Crystals. Langmuir, 2002, 18, 7447-7451.	1.6	7

#	Article	IF	CITATIONS
181	Assembly of α-helical Peptide Coatings on Hydrophobic Surfaces. Journal of the American Chemical Society, 2002, 124, 6297-6303.	6.6	56
182	Photoswitching of Ligand Association with a Photoresponsive Polymerâ^'Protein Conjugate. Bioconjugate Chemistry, 2002, 13, 915-919.	1.8	114
183	pH-Sensitive polymers that enhance intracellular drug delivery in vivo. Journal of Controlled Release, 2002, 78, 295-303.	4.8	191
184	Affinity separation using an Fv antibody fragment-?smart? polymer conjugate. Biotechnology and Bioengineering, 2002, 79, 271-276.	1.7	46
185	In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. Journal of Biomedical Materials Research Part B, 2002, 60, 472-479.	3.0	174
186	Design of ?Smart? polymers that can �direct intracellular drug delivery. Polymers for Advanced Technologies, 2002, 13, 992-999.	1.6	72
187	Early mechanistic events in biotin dissociation from streptavidin. Nature Structural Biology, 2002, 9, 582-5.	9.7	27
188	Title is missing!. Plasmas and Polymers, 2002, 7, 171-183.	1.5	36
189	Bioinspired Engineering of Intelligent Drug Delivery Systems and Protein– Polymer Conjugates. , 2002, , .		0
190	A pH-Sensitive Polymer That Enhances Cationic Lipid-Mediated Gene Transfer. Bioconjugate Chemistry, 2001, 12, 906-910.	1.8	162
191	Surface Characterization of Mixed Self-Assembled Monolayers Designed for Streptavidin Immobilization. Langmuir, 2001, 17, 2807-2816.	1.6	190
192	Mechanistic Investigation of Smart Polymerâ^'Protein Conjugates. Bioconjugate Chemistry, 2001, 12, 314-319.	1.8	44
193	Structure and Dynamics of Hydrated Statherin on Hydroxyapatite As Determined by Solid-State NMR. Biochemistry, 2001, 40, 15451-15455.	1.2	166
194	Focused Ultrasound and Poly(2-ethylacrylic acid) Act Synergistically To Disrupt Lipid Bilayers in Vitro. Macromolecules, 2001, 34, 2400-2401.	2.2	11
195	pH-sensitive hemolysis by random copolymers of alkyl acrylates and acrylic acid. Macromolecular Symposia, 2001, 172, 49-56.	0.4	52
196	Bioinspired polymers that control intracellular drug delivery. Biotechnology and Bioprocess Engineering, 2001, 6, 205-212.	1.4	15
197	Incorporation of fluorescent molecules and proteins into calcium oxalate monohydrate single crystals. Journal of Crystal Growth, 2001, 233, 380-388.	0.7	29
198	Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature, 2001, 411, 59-62.	13.7	237

#	Article	IF	CITATIONS
199	Really smart bioconjugates of smart polymers and receptor proteins. Journal of Biomedical Materials Research Part B, 2000, 52, 577-586.	3.0	301
200	Quantitative interrogation of micropatterned biomolecules by surface force microscopy. Ultramicroscopy, 2000, 82, 193-202.	0.8	18
201	Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics. Journal of Controlled Release, 2000, 65, 203-220.	4.8	104
202	Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin—biotin system. Protein Science, 2000, 9, 878-885.	3.1	75
203	Chimeric Peptides of Statherin and Osteopontin That Bind Hydroxyapatite and Mediate Cell Adhesion. Journal of Biological Chemistry, 2000, 275, 16213-16218.	1.6	105
204	Binding and Dissociation Kinetics of Wild-Type and Mutant Streptavidins on Mixed Biotin-Containing Alkylthiolate Monolayers. Langmuir, 2000, 16, 9421-9432.	1.6	187
205	Role of N- and C-Terminal Amino Acids in Two-Dimensional Streptavidin Crystal Formation. Langmuir, 2000, 16, 5199-5204.	1.6	15
206	A Solid State NMR Study of Dynamics in a Hydrated Salivary Peptide Adsorbed to Hydroxyapatite. Journal of the American Chemical Society, 2000, 122, 7118-7119.	6.6	60
207	Determination of Statherin N-Terminal Peptide Conformation on Hydroxyapatite Crystals. Journal of the American Chemical Society, 2000, 122, 1709-1716.	6.6	92
208	Site-Specific Polymerâ^'Streptavidin Bioconjugate for pH-Controlled Binding and Triggered Release of Biotin. Bioconjugate Chemistry, 2000, 11, 78-83.	1.8	190
209	Really smart bioconjugates of smart polymers and receptor proteins. , 2000, 52, 577.		2
210	A structural snapshot of an intermediate on the streptavidin-biotin dissociation pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8384-8389.	3.3	62
211	Two-dimensional crystallization of streptavidin: in pursuit of the molecular origins of structure, morphology, and thermodynamics. New Biotechnology, 1999, 16, 29-38.	2.7	12
212	Streptavidin–biotin binding energetics. New Biotechnology, 1999, 16, 39-44.	2.7	99
213	Smart and biofunctional streptavidin. New Biotechnology, 1999, 16, 93-99.	2.7	18
214	Development of new biotin/streptavidin reagents for pretargeting. New Biotechnology, 1999, 16, 113-118.	2.7	44
215	X-ray crystallographic studies of streptavidin mutants binding to biotin. New Biotechnology, 1999, 16, 13-19.	2.7	29
216	Atomic resolution structure of biotin-free Tyr43Phe streptavidin: what is in the binding site?. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1118-1126.	2.5	7

#	Article	IF	CITATIONS
217	Surface plasmon resonance measurement of binding and dissociation of wild-type and mutant streptavidin on mixed biotin-containing alkylthiolate monolayers. Sensors and Actuators B: Chemical, 1999, 54, 137-144.	4.0	58
218	Constrained Cell Recognition Peptides Engineered into Streptavidin. Biotechnology Progress, 1999, 15, 391-396.	1.3	20
219	May the force be with you. Nature, 1999, 397, 20-21.	13.7	7
220	Molecular Recognition between Genetically Engineered Streptavidin and Surface-Bound Biotin. Journal of the American Chemical Society, 1999, 121, 6469-6478.	6.6	195
221	Protein Electrostatic Surface Distribution Can Determine Whether Calcium Oxalate Crystal Growth is Promoted or Inhibited. Calcified Tissue International, 1999, 64, 516-521.	1.5	32
222	The design and synthesis of polymers for eukaryotic membrane disruption. Journal of Controlled Release, 1999, 61, 137-143.	4.8	396
223	Hemolytic Activity of pH-Responsive Polymer-Streptavidin Bioconjugatesâ€. Bioconjugate Chemistry, 1999, 10, 401-405.	1.8	121
224	Thermoprecipitation of Streptavidin via Oligonucleotide-Mediated Self-Assembly with Poly(N-isopropylacrylamide). Bioconjugate Chemistry, 1999, 10, 720-725.	1.8	88
225	Effects of Interfacial Binding Kinetics on Two-Dimensional Streptavidin Crystallization. Langmuir, 1999, 15, 7125-7129.	1.6	5
226	Determination of Torsion Angles in Proteins and Peptides Using Solid State NMR. Journal of the American Chemical Society, 1999, 121, 8373-8375.	6.6	68
227	Temperature Control of Biotin Binding and Release with A Streptavidin-Poly(N-isopropylacrylamide) Site-Specific Conjugate. Bioconjugate Chemistry, 1999, 10, 395-400.	1.8	110
228	Expression and Characterization of Human Salivary Statherin from Escherichia coli Using Two Different Fusion Constructs. Protein Expression and Purification, 1999, 16, 243-250.	0.6	5
229	Modification of ricin A chain, by addition of endoplasmic reticulum (KDEL) or Golgi (YQRL) retention sequences, enhances its cytotoxicity and translocation. Cancer Immunology, Immunotherapy, 1998, 46, 55-60.	2.0	22
230	Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidinâ€biotin system. Protein Science, 1998, 7, 848-859.	3.1	70
231	Engineering the isoelectric point of a renal cell carcinoma targeting antibody greatly enhances scFv solubility. Immunotechnology: an International Journal of Immunological Engineering, 1998, 4, 107-114.	2.4	34
232	Streptavidin in Antibody Pretargeting. Comparison of a Recombinant Streptavidin with Two Streptavidin Mutant Proteins and Two Commercially Available Streptavidin Proteins. Bioconjugate Chemistry, 1998, 9, 100-107.	1.8	24
233	Energetic Roles of Hydrogen Bonds at the Ureido Oxygen Binding Pocket in the Streptavidinâ^Biotin Complexâ€. Biochemistry, 1998, 37, 7657-7663.	1.2	130
234	Streptavidin in Antibody Pretargeting. 2. Evaluation of Methods for Decreasing Localization of Streptavidin to Kidney while Retaining Its Tumor Binding Capacity. Bioconjugate Chemistry, 1998, 9, 322-330.	1.8	35

#	Article	IF	CITATIONS
235	Molecular Basis for Ionic Strength Dependence and Crystal Morphology in Two-Dimensional Streptavidin Crystallization. Langmuir, 1998, 14, 4683-4687.	1.6	25
236	Structural studies of binding site tryptophan mutants in the high-affinity streptavidin-biotin complex 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1998, 279, 211-221.	2.0	77
237	Contributions of a Highly Conserved VH/VL Hydrogen Bonding Interaction to scFv Folding Stability and Refolding Efficiency. Biophysical Journal, 1998, 75, 1473-1482.	0.2	53
238	A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12083-12087.	3.3	97
239	Conjugates of stimuliâ€responsive polymers and biomolecules: Random and siteâ€specific conjugates of temperatureâ€sensitive polymers and proteins. Macromolecular Symposia, 1997, 118, 553-562.	0.4	16
240	Engineering Two-Dimensional Protein Order at Surfaces. Journal of Pharmaceutical Sciences, 1997, 86, 1204-1209.	1.6	6
241	Structural studies of the streptavidin binding loop. Protein Science, 1997, 6, 1157-1166.	3.1	180
242	Antibody Fragments in Tumor Pretargeting. Evaluation of Biotinylated Fabâ€~ Colocalization with Recombinant Streptavidin and Avidin. Bioconjugate Chemistry, 1996, 7, 689-702.	1.8	63
243	Surface-Linked Molecular Monolayers of an Engineered Myoglobin:Â Structure, Stability, and Function. Langmuir, 1996, 12, 1278-1283.	1.6	31
244	Two-dimensional protein crystallization via metal-ion coordination by naturally occurring surface histidines Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4937-4941.	3.3	76
245	Crystal packing interactions in streptavidin crystals. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C240-C240.	0.3	Ο
246	Comparison of streptavidin WxF and WxA mutants with the native protein. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C233-C233.	0.3	0
247	Investigation of non-covalent ligand binding to the intact streptavidin tetramer by electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 1995, 30, 1095-1102.	0.7	29
248	Engineered Chimeric Streptavidin Tetramers as Novel Tools for Bioseparations and Drug Delivery. Nature Biotechnology, 1995, 13, 1198-1204.	9.4	43
249	Control of protein–ligand recognition using a stimuli-responsive polymer. Nature, 1995, 378, 472-474.	13.7	674
250	Dissociation of tetrameric ions of noncovalent streptavidin complexes formed by electrospray ionization. Journal of the American Society for Mass Spectrometry, 1995, 6, 459-465.	1.2	128
251	Characterization of an Anti-Cd44 Single-Chain F _V Antibody That Stimulates Natural Killer Cell Activity and Induces TNF1± Release. Immunological Investigations, 1995, 24, 907-926.	1.0	7
252	Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120 Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1754-1758.	3.3	205

#	Article	IF	CITATIONS
253	The relationship between ligand-binding thermodynamics and protein-ligand interaction forces measured by atomic force microscopy. Biophysical Journal, 1995, 69, 2125-2130.	0.2	162
254	Molecular Origins of the Slow Streptavidin-Biotin Dissociation Kinetics. Journal of the American Chemical Society, 1995, 117, 10622-10628.	6.6	199
255	Liquid Crystallinity of a Biological Polysaccharide: The Levan/Water Phase Diagram. Macromolecules, 1994, 27, 953-957.	2.2	20
256	Site-Specific Conjugation of a Temperature-Sensitive Polymer to a Genetically Engineered Protein. Bioconjugate Chemistry, 1994, 5, 504-507.	1.8	136
257	Engineering Proteins for Electrooptical Biomaterials. Advances in Chemistry Series, 1994, , 475-490.	0.6	0
258	Intramolecular electron transfer in cytochrome b5 labeled with ruthenium(II) polypyridine complexes: rate measurements in the Marcus inverted region. Journal of the American Chemical Society, 1993, 115, 6820-6824.	6.6	66
259	Engineering protein orientation at surfaces to control macromolecular recognition events. Analytical Chemistry, 1993, 65, 2676-2678.	3.2	42
260	Engineered Proteins for Biomaterials. Materials Research Society Symposia Proceedings, 1992, 292, 77.	0.1	0
261	Genetic engineering of surface attachment sites yields oriented protein monolayers. Journal of the American Chemical Society, 1992, 114, 9298-9299.	6.6	70
262	Genetic engineering of redox donor sites: measurement of intracomplex electron transfer between ruthenium-65-cytochrome b5 and cytochrome c. Biochemistry, 1992, 31, 7237-7242.	1.2	83
263	Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop. Biochemistry, 1991, 30, 3406-3416.	1.2	31
264	Structural microheterogeneity of a tryptophan residue required for efficient biological electron transfer between putidaredoxin and cytochrome P-450CAM. Biochemistry, 1991, 30, 1845-1851.	1.2	55
265	[3] Mutagenesis of cytochromes P450cam and b5. Methods in Enzymology, 1991, 206, 31-49.	0.4	32
266	Cytochrome P-450cam binding surface defined by site-directed mutagenesis and electrostatic modeling. Biochemistry, 1990, 29, 7381-7386.	1.2	154
267	Mechanisms of macromolecular recognition as probed by site directed mutagenesis. Journal of Inorganic Biochemistry, 1989, 36, 274.	1.5	0
268	A conserved residue of cytochrome P-450 is involved in heme-oxygen stability and activation. Journal of the American Chemical Society, 1989, 111, 9252-9253.	6.6	272
269	Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association: a proposed molecular model for a cytochrome P-450cam electron-transfer complex. Biochemistry, 1989, 28, 8201-8205.	1.2	147
270	Determination of cytochrome b5 association reactions. Characterization of metmyoglobin and cytochrome P-450cam binding to genetically engineered cytochromeb5 Journal of Biological Chemistry, 1988, 263, 13544-13548.	1.6	62

#	Article	IF	CITATIONS
271	Determination of cytochrome b5 association reactions. Characterization of metmyoglobin and cytochrome P-450cam binding to genetically engineered cytochromeb5. Journal of Biological Chemistry, 1988, 263, 13544-8.	1.6	37
272	pH-Responsive Hyperbranched Copolymers from One-Pot RAFT Copolymerization of Propylacrylic Acid and Poly(ethylene glycol diacrylate). Advances in Science and Technology, 0, , .	0.2	1