Dana Maslovat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9280409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trouble doing two differently timed actions at once: What is the problem?. Psychological Review, 2024, 131, 231-246.	3.8	1
2	Retrospective composite analysis of StartReact data indicates sex differences in simple reaction time are not attributable to response preparation. Behavioural Brain Research, 2022, 426, 113839.	2.2	3
3	Response preparation of a secondary reaction time task is influenced by movement phase within a continuous visuomotor tracking task. European Journal of Neuroscience, 2022, 56, 3645-3659.	2.6	0
4	Response triggering by an acoustic stimulus increases with stimulus intensity and is best predicted by startle reflex activation. Scientific Reports, 2021, 11, 23612.	3.3	7
5	Increased auditory stimulus intensity results in an earlier and faster rise in corticospinal excitability. Brain Research, 2020, 1727, 146559.	2.2	7
6	Programming of action timing cannot be completed until immediately prior to initiation of the response to be controlled. Psychonomic Bulletin and Review, 2020, 27, 821-832.	2.8	11
7	An unperceived acoustic stimulus decreases reaction time to visual information in a patient with cortical deafness. Scientific Reports, 2020, 10, 5825.	3.3	1
8	Bimanual but not unimanual finger movements are triggered by a startling acoustic stimulus: evidence for increased reticulospinal drive for bimanual responses. Journal of Neurophysiology, 2020, 124, 1832-1838.	1.8	9
9	The bottleneck of the psychological refractory period effect involves timing of response initiation rather than response selection. Psychonomic Bulletin and Review, 2019, 26, 29-47.	2.8	19
10	StartReact effects are dependent on engagement of startle reflex circuits: support for a subcortically mediated initiation pathway. Journal of Neurophysiology, 2019, 122, 2541-2547.	1.8	14
11	Visual processing is diminished during movement execution. PLoS ONE, 2019, 14, e0213790.	2.5	1
12	Influence of kinesthetic motor imagery and effector specificity on the long-latency stretch response. Journal of Neurophysiology, 2019, 122, 2187-2200.	1.8	4
13	High-intensity transcranial magnetic stimulation reveals differential cortical contributions to prepared responses. Journal of Neurophysiology, 2019, 121, 1809-1821.	1.8	16
14	The effect of response complexity on simple reaction time occurs even with a highly predictable imperative stimulus. Neuroscience Letters, 2019, 704, 62-66.	2.1	7
15	Startle and the StartReact Effect: Physiological Mechanisms. Journal of Clinical Neurophysiology, 2019, 36, 452-459.	1.7	36
16	A Timeline of Motor Preparatory State Prior to Response Initiation: Evidence from Startle. Neuroscience, 2019, 397, 80-93.	2.3	11
17	Mechanical perturbations can elicit triggered reactions in the absence of a startle response. Experimental Brain Research, 2018, 236, 365-379.	1.5	5
18	Coactivation of response initiation processes with redundant signals. Neuroscience Letters, 2018, 675, 7-11.	2.1	3

DANA MASLOVAT

#	Article	IF	CITATIONS
19	Preparation of timing structure involves two independent sub-processes. Psychological Research, 2018, 82, 981-996.	1.7	10
20	Response preparation and execution during intentional bimanual pattern switching. Journal of Neurophysiology, 2017, 118, 1720-1731.	1.8	6
21	Intentional switches between coordination patterns are faster following anodal-tDCS applied over the supplementary motor area. Brain Stimulation, 2017, 10, 162-164.	1.6	9
22	Investigation of timing preparation during response initiation and execution using a startling acoustic stimulus. Experimental Brain Research, 2017, 235, 15-27.	1.5	4
23	Perturbation Predictability Can Influence the Long-Latency Stretch Response. PLoS ONE, 2016, 11, e0163854.	2.5	12
24	Corticospinal excitability is reduced in a simple reaction time task requiring complex timing. Brain Research, 2016, 1642, 319-326.	2.2	7
25	An examination of the startle response during upper limb stretch perturbations. Neuroscience, 2016, 337, 163-176.	2.3	6
26	Independent planning of timing and sequencing for complex movements Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 1158-1172.	0.9	8
27	Responses to startling acoustic stimuli indicate that movement-related activation is constant prior to action: aÂreplication with an alternate interpretation. Physiological Reports, 2015, 3, e12300.	1.7	27
28	Responses to startling acoustic stimuli indicate that movement-related activation does not build up in anticipation of action. Journal of Neurophysiology, 2015, 113, 3453-3454.	1.8	2
29	Voluntary reaction time and long-latency reflex modulation. Journal of Neurophysiology, 2015, 114, 3386-3399.	1.8	29
30	Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. Journal of Neurophysiology, 2015, 113, 780-785.	1.8	26
31	A startling acoustic stimulus interferes with upcoming motor preparation: Evidence for a startle refractory period. Acta Psychologica, 2015, 158, 36-42.	1.5	8
32	Reduced motor preparation during dual-task performance: evidence from startle. Experimental Brain Research, 2015, 233, 2673-2683.	1.5	13
33	Startle activation is additive with voluntary cortical activation irrespective of stimulus modality. Neuroscience Letters, 2015, 606, 151-155.	2.1	11
34	Control of response timing occurs during the simple reaction time interval but on-line for choice reaction time Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 2005-2021.	0.9	23
35	Startle neural activity is additive with normal cortical initiation-related activation. Neuroscience Letters, 2014, 558, 164-168.	2.1	22
36	Cortical involvement in the StartReact effect. Neuroscience, 2014, 269, 21-34.	2.3	40

DANA MASLOVAT

#	Article	IF	CITATIONS
37	The Time Course of Corticospinal Excitability during a Simple Reaction Time Task. PLoS ONE, 2014, 9, e113563.	2.5	27
38	When unintended movements "leak―out: A startling acoustic stimulus can elicit a prepared response during motor imagery and action observation. Neuropsychologia, 2013, 51, 838-844.	1.6	12
39	Evidence for a response preparation bottleneck during dual-task performance: Effect of a startling acoustic stimulus on the psychological refractory period. Acta Psychologica, 2013, 144, 481-487.	1.5	15
40	Subcortical motor circuit excitability during simple and choice reaction time Behavioral Neuroscience, 2012, 126, 499-503.	1.2	18
41	The effects of prepulse inhibition timing on the startle reflex and reaction time. Neuroscience Letters, 2012, 513, 243-247.	2.1	29
42	Investigation of stimulus–response compatibility using a startling acoustic stimulus. Brain and Cognition, 2012, 78, 1-6.	1.8	6
43	Preparation for voluntary movement in healthy and clinical populations: Evidence from startle. Clinical Neurophysiology, 2012, 123, 21-33.	1.5	98
44	Reaction time effects due to imperative stimulus modality are absent when a startle elicits a pre-programmed action. Neuroscience Letters, 2011, 500, 177-181.	2.1	11
45	Motor preparation of spatially and temporally defined movements: evidence from startle. Journal of Neurophysiology, 2011, 106, 885-894.	1.8	13
46	Default motor preparation under conditions of response uncertainty. Experimental Brain Research, 2011, 215, 235-245.	1.5	14
47	Considerations for the use of a startling acoustic stimulus in studies of motor preparation in humans. Neuroscience and Biobehavioral Reviews, 2011, 35, 366-376.	6.1	115
48	Motor preparation and the effects of practice: Evidence from startle Behavioral Neuroscience, 2011, 125, 226-240.	1.2	41
49	Anchoring in a novel bimanual coordination pattern. Human Movement Science, 2009, 28, 28-47.	1.4	10
50	Response preparation changes during practice of an asynchronous bimanual movement. Experimental Brain Research, 2009, 195, 383-392.	1.5	24
51	Response preparation changes following practice of an asymmetrical bimanual movement. Experimental Brain Research, 2008, 190, 239-249.	1.5	19
52	Perceptual processing time differences owing to visual field asymmetries. NeuroReport, 2007, 18, 1067-1070.	1.2	8