
Carlo Matera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast Photoswitchable Molecular Prosthetics Control Neuronal Activity in the Cochlea. Journal of the American Chemical Society, 2022, 144, 9229-9239.	13.7	3
2	Adrenergic Modulation With Photochromic Ligands. Angewandte Chemie, 2021, 133, 3669-3675.	2.0	5
3	Adrenergic Modulation With Photochromic Ligands. Angewandte Chemie - International Edition, 2021, 60, 3625-3631.	13.8	29
4	Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist. Advanced Science, 2021, 8, e2005027.	11.2	8
5	Rational Design of Photochromic Analogues of Tricyclic Drugs. Journal of Medicinal Chemistry, 2021, 64, 9259-9270.	6.4	9
6	The Combined Treatment with Chemotherapeutic Agents and the Dualsteric Muscarinic Agonist Iper-8-Naphthalimide Affects Drug Resistance in Glioblastoma Stem Cells. Cells, 2021, 10, 1877.	4.1	8
7	The Mechanisms Mediated by α7 Acetylcholine Nicotinic Receptors May Contribute to Peripheral Nerve Regeneration. Molecules, 2021, 26, 7668.	3.8	7
8	Ligand-Specific Allosteric Coupling Controls G-Protein-Coupled Receptor Signaling. ACS Pharmacology and Translational Science, 2020, 3, 859-867.	4.9	15
9	Effects mediated by the α7 nicotinic acetylcholine receptor on cell proliferation and migration in rat adipose-derived stem cells. European Journal of Histochemistry, 2020, 64, .	1.5	6
10	An Azobenzene-Based Single-Component Supramolecular Polymer Responsive to Multiple Stimuli in Water. Journal of the American Chemical Society, 2020, 142, 10069-10078.	13.7	49
11	ICH3, a selective alpha7 nicotinic acetylcholine receptor agonist, modulates adipocyte inflammation associated with obesity. Journal of Endocrinological Investigation, 2020, 43, 983-993.	3.3	12
12	Novel analgesic agents obtained by molecular hybridization of orthosteric and allosteric ligands. European Journal of Pharmacology, 2020, 876, 173061.	3.5	3
13	Optical Control of Cardiac Function with a Photoswitchable Muscarinic Agonist. Journal of the American Chemical Society, 2019, 141, 7628-7636.	13.7	52
14	Fluorination of Photoswitchable Muscarinic Agonists Tunes Receptor Pharmacology and Photochromic Properties. Journal of Medicinal Chemistry, 2019, 62, 3009-3020.	6.4	31
15	The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons. Biochemical Pharmacology, 2019, 163, 154-168.	4.4	14
16	Photochromic antifolate for light-activated chemotherapy. , 2019, , .		1
17	In vivo and in vitro ADMET profiling and in vivo pharmacodynamic investigations of a selective α7 nicotinic acetylcholine receptor agonist with a spirocyclic Δ 2 -isoxazoline molecular skeleton. European Journal of Pharmacology, 2018, 820, 265-273.	3.5	12
18	Activation of M2 muscarinic acetylcholine receptors by a hybrid agonist enhances cytotoxic effects in GB7 glioblastoma cancer stem cells. Neurochemistry International, 2018, 118, 52-60.	3.8	19

CARLO MATERA

#	Article	IF	CITATIONS
19	Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. Journal of the American Chemical Society, 2018, 140, 15764-15773.	13.7	84
20	Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the α7 nicotinic acetylcholine receptor subtype: Synthesis and electrophysiological evaluation. European Journal of Medicinal Chemistry, 2018, 160, 207-228.	5.5	9
21	A Small Library of 1,2,3â€Triazole Analogs of <scp>CAP</scp> â€55: Synthesis and Binding Affinity at Nicotinic Acetylcholine Receptors. Chemistry and Biodiversity, 2018, 15, e1800210.	2.1	5
22	A New Molecular Mechanism To Engineer Protean Agonism at a G Protein–Coupled Receptor. Molecular Pharmacology, 2017, 91, 348-356.	2.3	13
23	Identification of α7 Nicotinic Acetylcholine Receptor Silent Agonists Based on the Spirocyclic Quinuclidineâ€Î" ² â€Isoxazoline Scaffold: Synthesis and Electrophysiological Evaluation. ChemMedChem, 2017, 12, 1335-1348.	3.2	15
24	Novel bipharmacophoric inhibitors of the cholinesterases with affinity to the muscarinic receptors M ₁ and M ₂ . MedChemComm, 2017, 8, 1346-1359.	3.4	10
25	Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor. Journal of Biological Chemistry, 2016, 291, 16375-16389.	3.4	67
26	Modification of the anabaseine pyridine nucleus allows achieving binding and functional selectivity for the α3β4 nicotinic acetylcholine receptor subtype. European Journal of Medicinal Chemistry, 2016, 108, 392-405.	5.5	14
27	Determination of Acid Dissociation Constants of Poorly Water-Soluble Nicotinic Ligands by Means of Electrophoretic and Potentiometric Techniques. Pharmaceutica Analytica Acta, 2015, 06, .	0.2	Ο
28	Allosteric Modulation of Alpha7 Nicotinic Receptors: Mechanistic Insight through Metadynamics and Essential Dynamics. Journal of Chemical Information and Modeling, 2015, 55, 2528-2539.	5.4	11
29	Bifunctional compounds targeting both D2 and non-α7 nACh receptors: Design, synthesis and pharmacological characterization. European Journal of Medicinal Chemistry, 2015, 101, 367-383.	5.5	12
30	On the selection of an opioid for local skin analgesia: Structure-skin permeability relationships. International Journal of Pharmaceutics, 2015, 489, 177-185.	5.2	14
31	A convenient synthesis of 4-(2-hydroxyethyl)indolin-2-one, a useful intermediate for the preparation of both dopamine receptor agonists and protein kinase inhibitors. Monatshefte F¼r Chemie, 2014, 145, 1139-1144.	1.8	1
32	Bis(ammonio)alkane-type agonists of muscarinic acetylcholine receptors: Synthesis, inÂvitro functional characterization, and inÂvivo evaluation of their analgesic activity. European Journal of Medicinal Chemistry, 2014, 75, 222-232.	5.5	25
33	Involvement of α7 nAChR subtype in rat oxaliplatin-induced neuropathy: Effects of selective activation. Neuropharmacology, 2014, 79, 37-48.	4.1	75
34	Pharmacological Approaches to Targeting Muscarinic Acetylcholine Receptors. Recent Patents on CNS Drug Discovery, 2014, 9, 85-100.	0.9	29
35	Investigating the hydrogen-bond acceptor site of the nicotinic pharmacophore model: a computational and experimental study using epibatidine-related molecular probes. Journal of Computer-Aided Molecular Design, 2013, 27, 975-987.	2.9	7
36	The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nature Communications, 2012, 3, 1044.	12.8	117

CARLO MATERA

#	Article	IF	CITATIONS
37	A novel spirocyclic tropanyl-Δ2-isoxazoline derivative enhances citalopram and paroxetine binding to serotonin transporters as well as serotonin uptake. Bioorganic and Medicinal Chemistry, 2012, 20, 6344-6355.	3.0	7
38	The enantiomers of epiboxidine and of two related analogs: Synthesis and estimation of their binding affinity at α4β2 and α7 neuronal nicotinic acetylcholine receptors. Chirality, 2012, 24, 543-551.	2.6	5
39	Total Syntheses of Anominine and Tubingensin A. Journal of the American Chemical Society, 2012, 134, 8078-8081.	13.7	120
40	Synthesis and binding affinity at α4β2 and α7 nicotinic acetylcholine receptors of new analogs of epibatidine and epiboxidine containing the 7-azabicyclo[2.2.1]hept-2-ene ring system. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 829-832.	2.2	11
41	New spirocyclic Δ2-isoxazoline derivatives related to selective agonists of α7 neuronal nicotinic acetylcholine receptors. European Journal of Medicinal Chemistry, 2011, 46, 5790-5799.	5.5	12
42	Design, Synthesis, and Pharmacological Characterization of Novel Spirocyclic Quinuclidinylâ€Î" ² â€Isoxazoline Derivatives as Potent and Selective Agonists of α7 Nicotinic Acetylcholine Receptors. ChemMedChem, 2011, 6, 889-903.	3.2	32
43	Novel tricyclic Δ2-isoxazoline and 3-oxo-2-methyl-isoxazolidine derivatives: Synthesis and binding affinity at neuronal nicotinic acetylcholine receptor subtypes. Bioorganic and Medicinal Chemistry, 2010, 18, 4498-4508.	3.0	16
44	Synthesis of novel chiral Δ2-isoxazoline derivatives related to ABT-418 and estimation of their affinity at neuronal nicotinic acetylcholine receptor subtypes. European Journal of Medicinal Chemistry, 2010, 45, 5594-5601.	5.5	13
45	Design of novel α7-subtype-preferring nicotinic acetylcholine receptor agonists: Application of docking and MM-PBSA computational approaches, synthetic and pharmacological studies. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6353-6357.	2.2	29
46	Epiboxidine and novel-related analogues: A convenient synthetic approach and estimation of their affinity at neuronal nicotinic acetylcholine receptor subtypes. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4651-4654.	2.2	28