
Clementina M M Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9279090/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. European Journal of Medicinal Chemistry, 2018, 157, 1460-1479.	5.5	139
2	2-Styrylchromones: Novel strong scavengers of reactive oxygen and nitrogen species. Bioorganic and Medicinal Chemistry, 2007, 15, 6027-6036.	3.0	125
3	Chalcones as Versatile Synthons for the Synthesis of 5- and 6-membered Nitrogen Heterocycles. Current Organic Chemistry, 2014, 18, 2750-2775.	1.6	76
4	An Overview of 2‣tyrylchromones: Natural Occurrence, Synthesis, Reactivity and Biological Properties. European Journal of Organic Chemistry, 2017, 2017, 3115-3133.	2.4	52
5	Novel chromone and xanthone derivatives: Synthesis and ROS/RNS scavenging activities. European Journal of Medicinal Chemistry, 2016, 115, 381-392.	5.5	42
6	A study towards drug discovery for the management of type 2 diabetes <i>mellitus</i> through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives. Food and Function, 2019, 10, 5510-5520.	4.6	41
7	Anti-inflammatory potential of 2-styrylchromones regarding their interference with arachidonic acid metabolic pathways. Biochemical Pharmacology, 2009, 78, 171-177.	4.4	37
8	Cyclic voltammetric analysis of 2-styrylchromones: Relationship with the antioxidant activity. Bioorganic and Medicinal Chemistry, 2008, 16, 7939-7943.	3.0	35
9	Cholesterol-Based Compounds: Recent Advances in Synthesis and Applications. Molecules, 2019, 24, 116.	3.8	34
10	Synthesis of Chromone-Related Pyrazole Compounds. Molecules, 2017, 22, 1665.	3.8	33
11	2-Styrylchromones As Novel Inhibitors of Xanthine Oxidase. A Structure-activity Study. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 45-48.	5.2	31
12	Hepatoprotective activity of polyhydroxylated 2-styrylchromones against tert-butylhydroperoxide induced toxicity in freshly isolated rat hepatocytes. Archives of Toxicology, 2003, 77, 500-505.	4.2	31
13	Efficient Syntheses of New Polyhydroxylated 2,3-Diaryl-9H-xanthen-9-ones. European Journal of Organic Chemistry, 2009, 2009, 2642-2660.	2.4	30
14	Epoxidation of (E,E)-Cinnamylideneacetophenones with Hydrogen Peroxide and Iodosylbenzene with Salen-MnIII as the Catalyst. European Journal of Organic Chemistry, 2007, 2007, 2877-2887.	2.4	25
15	2,3-Diarylxanthones as strong scavengers of reactive oxygen and nitrogen species: A structure–activity relationship study. Bioorganic and Medicinal Chemistry, 2010, 18, 6776-6784.	3.0	25
16	Synthesis and Transformation of Halochromones. Current Organic Synthesis, 2014, 11, 317-341.	1.3	20
17	Inhibition of NF-kB Activation and Cytokines Production in THP-1 Monocytes by 2-Styrylchromones. Medicinal Chemistry, 2015, 11, 560-566.	1.5	15

18 (<i>E</i>)â€2â€(4â€Arylbutâ€1â€enâ€3â€ynâ€1â€yl)chromones as Synthons for the Synthesis of Xanthoneâ€1,2,3â€triazole Dyads. European Journal of Organic Chemistry, 2015, 4732-4743.

#	Article	IF	CITATIONS
19	First intramolecular Diels–Alder reactions using chromone derivatives: synthesis of chromeno[3,4- <i>b</i>]xanthones and 2-(benzo[<i>c</i>]chromenyl)chromones. New Journal of Chemistry, 2018, 42, 4251-4260.	2.8	13
20	The dependence of α-tocopheroxyl radical reduction by hydroxy-2,3-diarylxanthones on structure and micro-environment. Organic and Biomolecular Chemistry, 2012, 10, 2068.	2.8	12
21	Electrochemical characterization of bioactive hydroxyxanthones by cyclic voltammetry. Tetrahedron Letters, 2013, 54, 85-90.	1.4	12
22	2,3-Diarylxanthones as Potential Inhibitors of Arachidonic Acid Metabolic Pathways. Inflammation, 2017, 40, 956-964.	3.8	12
23	Inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by hydroxylated xanthones. Food and Function, 2022, 13, 7930-7941.	4.6	12
24	Structure–activity relationships in hydroxy-2,3-diarylxanthone antioxidants. Fast kinetics spectroscopy as a tool to evaluate the potential for antioxidant activity in biological systems. Organic and Biomolecular Chemistry, 2011, 9, 3965.	2.8	11
25	Epoxidation studies of 2-styrylchromones using jacobsen's catalyst and hydrogen peroxide and iodosylbenzene as oxidants. Journal of Heterocyclic Chemistry, 2006, 43, 1319-1326.	2.6	9
26	Steroid–Quinoline Hybrids for Disruption and Reversion of Protein Aggregation Processes. ACS Medicinal Chemistry Letters, 2022, 13, 443-448.	2.8	8
27	2â€[(1 <i>E</i> ,3 <i>E</i>)â€4â€Arylbutaâ€1,3â€dienâ€1â€yl]â€4 <i>H</i> â€chromenâ€4â€ones as Dienes in Die Experimental and Computational Studies. European Journal of Organic Chemistry, 2017, 2017, 87-101.	ls–Alder 2.4	Reactions â
28	Synthesis and structure elucidation of novel pyrazolyl-2-pyrazolines obtained by the reaction of 3-(3-aryl-3-oxopropenyl)chromen-4-ones with phenylhydrazine. Arkivoc, 2012, 2012, 265-281.	0.5	7
29	Tetrahydroquinazoline-substituted chromones from Diels–Alder reaction of (E)-2-styrylchromones and pyrimidine ortho-quinodimethane. Tetrahedron Letters, 2012, 53, 2722-2725.	1.4	5
30	Six-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2013, 25, 409-453.	0.5	5
31	Arylxanthones and arylacridones: a synthetic overview. Pure and Applied Chemistry, 2016, 88, 579-594.	1.9	5
32	Six-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2015, 27, 465-529.	0.5	4
33	A Novel and Efficient Route for the Synthesis of Hydroxylated 2,3-Diarylxanthones. Synlett, 2007, 2007, 3113-3116.	1.8	3
34	Six-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2014, 26, 463-520.	0.5	3
35	Nuclear Magnetic Resonance Spectroscopy for Structural Characterization of Bioactive Compounds. Comprehensive Analytical Chemistry, 2014, 65, 149-191.	1.3	3
36	Characterization of 2,3-diarylxanthones by electrospray mass spectrometry: gas-phase chemistry versus known antioxidant activity properties. Rapid Communications in Mass Spectrometry, 2016, 30, 2228-2236.	1.5	3

#	Article	IF	CITATIONS
37	New Synthesis of 2,3-Diarylxanthones. Synlett, 2005, 2005, 3095-3098.	1.8	2
38	Dimethyldioxirane Oxidation of Exocyclic (E,E)-Cinnamylideneketones. Australian Journal of Chemistry, 2009, 62, 82.	0.9	2
39	Six-Membered Ring Systems: With O and/or S Atoms. Progress in Heterocyclic Chemistry, 2012, 24, 443-492.	0.5	2
40	1,6â€Conjugate Additions of Carbon Nucleophiles to 2â€[(1 <i>E</i> ,3 <i>E</i>)â€4â€Arylbutaâ€1,3â€dienâ€1â€yl]â€4 <i>H</i> â€chromenâ€4â€ones. European Jouri Chemistry, 2017, 2017, 5293-5305.	nabof Orga	aniz
41	Six-Membered Ring Systems: With O and/or S Atoms. Progress in Heterocyclic Chemistry, 2018, 30, 427-491.	0.5	2
42	Synthesis of Novel 1-Aryl-9H-xanthen-9-ones. Synlett, 2011, 2011, 1403-1406.	1.8	1
43	Six-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2016, 28, 523-578.	0.5	1
44	Recent advances in the synthesis of 4H-chromen-4-ones (2012 â^' 2021). Advances in Heterocyclic Chemistry, 2022, , .	1.7	1
45	Eight-Membered Rings With One Oxygen Atom. , 2020, , 44-44.		0
46	Cholesterol chemistry and laboratory synthesis. , 2022, , 3-24.		0