
Nicole L Achee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Critical Assessment of Vector Control for Dengue Prevention. PLoS Neglected Tropical Diseases, 2015, 9, e0003655.	3.0	328
2	Spatial repellents: from discovery and development to evidence-based validation. Malaria Journal, 2012, 11, 164.	2.3	210
3	A New Classification System for the Actions of IRS Chemicals Traditionally Used For Malaria Control. PLoS ONE, 2007, 2, e716.	2.5	191
4	Alternative strategies for mosquito-borne arbovirus control. PLoS Neglected Tropical Diseases, 2019, 13, e0006822.	3.0	165
5	A NOVEL HIGH-THROUGHPUT SCREENING SYSTEM TO EVALUATE THE BEHAVIORAL RESPONSE OF ADULT MOSQUITOES TO CHEMICALS1. Journal of the American Mosquito Control Association, 2005, 21, 404-411.	0.7	106
6	Characterization of Spatial Repellent, Contact Irritant, and Toxicant Chemical Actions of Standard Vector Control Compounds ¹ . Journal of the American Mosquito Control Association, 2009, 25, 156-167.	0.7	91
7	Impact of a Spatial Repellent on Malaria Incidence in Two Villages in Sumba, Indonesia. American Journal of Tropical Medicine and Hygiene, 2014, 91, 1079-1087.	1.4	76
8	Quantifying the Epidemiological Impact of Vector Control on Dengue. PLoS Neglected Tropical Diseases, 2016, 10, e0004588.	3.0	70
9	Insensitivity to the Spatial Repellent Action of Transfluthrin in Aedes aegypti: A Heritable Trait Associated with Decreased Insecticide Susceptibility. PLoS Neglected Tropical Diseases, 2015, 9, e0003726.	3.0	56
10	Efficacy of a Spatial Repellent for Control of Malaria in Indonesia: A Cluster-Randomized Controlled Trial. American Journal of Tropical Medicine and Hygiene, 2020, 103, 344-358.	1.4	53
11	Volatile Substances from Larval Habitats Mediate Species-Specific Oviposition in Anopheles Mosquitoes. Journal of Medical Entomology, 2005, 42, 95-103.	1.8	46
12	Initial Assessment of the Acceptability of a Push-Pull Aedes aegypti Control Strategy in Iquitos, Peru and Kanchanaburi, Thailand. American Journal of Tropical Medicine and Hygiene, 2011, 84, 208-217.	1.4	44
13	Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti. Parasites and Vectors, 2012, 5, 300.	2.5	43
14	Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN). PLoS Neglected Tropical Diseases, 2016, 10, e0005054.	3.0	43
15	A MARK-RELEASE-RECAPTURE STUDY USING A NOVEL PORTABLE HUT DESIGN TO DEFINE THE FLIGHT BEHAVIOR OF ANOPHELES DARLINGI IN BELIZE, CENTRAL AMERICA1. Journal of the American Mosquito Control Association, 2005, 21, 366-379.	0.7	37
16	Distribution of Anopheles albimanus, Anopheles vestitipennis, and Anopheles crucians Associated with Land Use in Northern Belize. Journal of Medical Entomology, 2006, 43, 614-622.	1.8	35
17	COMPARATIVE SUSCEPTIBILITY OF THREE SPECIES OF ANOPHELES FROM BELIZE, CENTRAL AMERICA, TO PLASMODIUM FALCIPARUM (NF-54). Journal of the American Mosquito Control Association, 2005, 21, 279.	0.7	33
18	Behavioral Responses of Catnip (Nepeta cataria) by Two Species of Mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand. Journal of the American Mosquito Control Association, 2008, 24, 513-519.	0.7	33

#	Article	IF	CITATIONS
19	Irritancy and Repellency Behavioral Responses of Three Strains of <i>Aedes aegypti</i> Exposed to DDT and <i>l±</i> Cypermethrin. Journal of Medical Entomology, 2009, 46, 1407-1414.	1.8	31
20	Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals. PLoS Neglected Tropical Diseases, 2013, 7, e2074.	3.0	30
21	Ecology of Larval Habitats. , 0, , .		28
22	Irritability and repellency of synthetic pyrethroids on an Aedes aegypti population from Thailand. Journal of Vector Ecology, 2009, 34, 217-224.	1.0	26
23	The field evaluation of a push-pull system to control malaria vectors in Northern Belize, Central America. Malaria Journal, 2015, 14, 184.	2.3	26
24	Use of Remote Sensing and Geographic Information Systems to Predict Locations of <i>Anopheles darlingi</i> -Positive Breeding Sites Within the Sibun River in Belize, Central America. Journal of Medical Entomology, 2006, 43, 382-392.	1.8	25
25	Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinelâ,,¢ trap catches. Parasites and Vectors, 2013, 6, 145.	2.5	24
26	Distribution of <1>Anopheles albimanus 1 , <1>Anopheles vestitipennis 1 , and <1>Anopheles crucians 1 Associated with Land Use in Northern Belize. Journal of Medical Entomology, 2006, 43, 614-622.	1.8	23
27	The effect of host type on movement patterns of Aedes aegypti (Diptera: Culicidae) into and out of experimental huts in Thailand. Journal of Vector Ecology, 2006, 31, 311-318.	1.0	23
28	Effect of Spatial Repellent Exposure on Dengue Vector Attraction to Oviposition Sites. PLoS Neglected Tropical Diseases, 2016, 10, e0004850.	3.0	23
29	International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasites and Vectors, 2017, 10, 278.	2.5	23
30	Efficacy of a spatial repellent for control of <i>Aedes</i> -borne virus transmission: A cluster-randomized trial in Iquitos, Peru. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	23
31	Use of Remote Sensing and Geographic Information Systems to Predict Locations ofAnopheles darlingi-Positive Breeding Sites Within the Sibun River in Belize, Central America. Journal of Medical Entomology, 2006, 43, 382-392.	1.8	22
32	Habitat suitability for three species of Anopheles mosquitoes: Larval growth and survival in reciprocal placement experiments. Journal of Vector Ecology, 2007, 32, 176.	1.0	21
33	Biting patterns and seasonal densities of Anopheles mosquitoes in the Cayo District, Belize, Central America with emphasis on Anopheles darlingi. Journal of Vector Ecology, 2006, 31, 45-57.	1.0	20
34	A MARK–RELEASE–RECAPTURE STUDY TO DEFINE THE FLIGHT BEHAVIORS OF ANOPHELES VESTITIPENNIS AN ANOPHELES ALBIMANUS IN BELIZE, CENTRAL AMERICA1. Journal of the American Mosquito Control Association, 2007, 23, 276-282.	ND 0.7	20
35	Effects of environmental conditions on the movement patterns of Aedes aegypti (Diptera: Culicidae) into and out of experimental huts in Thailand. Journal of Vector Ecology, 2009, 34, 267-275.	1.0	20
36	Evaluation of a peridomestic mosquito trap for integration into an Aedes aegypti (Diptera: Culicidae) push-pull control strategy. Journal of Vector Ecology, 2012, 37, 8-19.	1.0	19

#	Article	IF	CITATIONS
37	Knowledge, attitudes and practices assessment of malaria interventions in rural Zambia. BMC Public Health, 2020, 20, 216.	2.9	19
38	A High Throughput Screening System for Determining the Three Actions of Insecticides AgainstAedes aegypti(Diptera: Culicidae) Populations in Thailand. Journal of Medical Entomology, 2010, 47, 833-841.	1.8	18
39	Comparison of <i>Aedes aegypti</i> (Diptera: Culicidae) Resting Behavior on Two Fabric Types Under Consideration for Insecticide Treatment in a Push-Pull Strategy. Journal of Medical Entomology, 2013, 50, 59-68.	1.8	18
40	Comparative Behavioral Responses of Pyrethroid-Susceptible and -Resistant <1>Aedes aegypti 1 (Diptera: Culicidae) Populations to Citronella and Eucalyptus Oils. Journal of Medical Entomology, 2014, 51, 1182-1191.	1.8	16
41	Modern Vector Control. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a025643.	6.2	16
42	Effects of Physiological Conditioning on Behavioral Avoidance by Using a Single Age Group of Aedes aegypti Exposed to Deltamethrin and DDT. Journal of Medical Entomology, 2008, 45, 251-259.	1.8	15
43	Host feeding preferences of Anopheles species collected by manual aspiration, mechanical aspiration, and from a vehicle-mounted trap in the Toledo District, Belize, Central America. Journal of the American Mosquito Control Association, 2002, 18, 307-15.	0.7	15
44	Effects of Physiological Conditioning on Behavioral Avoidance by Using a Single Age Group of <i>Aedes aegypti</i> Exposed to Deltamethrin and DDT. Journal of Medical Entomology, 2008, 45, 251-259.	1.8	14
45	An improved experimental hut design for the study of Aedes aegypti (Diptera: Culicidae) movement patterns in Thailand. Journal of Vector Ecology, 2010, 35, 428-431.	1.0	14
46	A High Throughput Screening System for Determining the Three Actions of Insecticides Against <1>Aedes aegypti 1 (Diptera: Culicidae) Populations in Thailand. Journal of Medical Entomology, 2010, 47, 833-841.	1.8	14
47	Evaluation of habitat management strategies for the reduction of malaria vectors in northern Belize. Journal of Vector Ecology, 2005, 30, 235-43.	1.0	14
48	Evaluation of the protective efficacy of a spatial repellent to reduce malaria incidence in children in western Kenya compared to placebo: study protocol for a cluster-randomized double-blinded control trial (the AEGIS program). Trials, 2022, 23, 260.	1.6	14
49	Comparative data on the insecticide resistance of AnophelesÂalbimanus in relation to agricultural practices in northern Belize, CA. Journal of Pest Science, 2010, 83, 41-46.	3.7	13
50	Targeting educational campaigns for prevention of malaria and dengue fever: an assessment in Thailand. Parasites and Vectors, 2015, 8, 43.	2.5	13
51	The use of an experimental hut for evaluating the entering and exiting behavior of Aedes aegypti (Diptera: Culicidae), a primary vector of dengue in Thailand. Journal of Vector Ecology, 2005, 30, 344-6.	1.0	12
52	Effects of Preexposure to DEET on the Downstream Blood-Feeding Behaviors of <i>Aedes aegypti</i> (Diptera: Culicidae) Mosquitoes. Journal of Medical Entomology, 2016, 53, 1100-1104.	1.8	11
53	Freshwater community interactions and malaria. , 2006, , 90-104.		11
54	Mosquito control practices and perceptions: An analysis of economic stakeholders during the Zika epidemic in Belize, Central America. PLoS ONE, 2018, 13, e0201075.	2.5	10

#	Article	IF	CITATIONS
55	Experimental evaluation of overhanging bamboo in Anopheles darlingi larval habitat selection in Belize, Central America. Journal of Vector Ecology, 2006, 31, 145-151.	1.0	9
56	Outcomes from international field trials with Male Aedes Sound Traps: Frequency-dependent effectiveness in capturing target species in relation to bycatch abundance. PLoS Neglected Tropical Diseases, 2021, 15, e0009061.	3.0	9
57	Model-based analysis of experimental data from interconnected, row-configured huts elucidates multifaceted effects of a volatile chemical on Aedes aegypti mosquitoes. Parasites and Vectors, 2018, 11, 365.	2.5	8
58	Is It Time to Formally Recognize Spatial Repellency for Disease Prevention?. Outlooks on Pest Management, 2012, 23, 283-286.	0.2	7
59	Determining Airborne Concentrations of Spatial Repellent Chemicals in Mosquito Behavior Assay Systems. PLoS ONE, 2013, 8, e71884.	2.5	7
60	Influence of Location and Distance of Biogents Sentinelâ,,¢ Traps From Human-Occupied Experimental Huts On Aedes aegypti Recapture and Entry Into Huts. Journal of the American Mosquito Control Association, 2018, 34, 201-209.	0.7	7
61	Fatty acids in anopheline mosquito larvae and their habitats. Journal of Vector Ecology, 2012, 37, 382-395.	1.0	6
62	First Record and Demonstration of a Southward Expansion ofAedes albopictusinto Orange Walk Town, Belize, Central America1. Journal of the American Mosquito Control Association, 2013, 29, 380-382.	0.7	6
63	BG-Sentinel™ Trap Efficacy As A Component of Proof-Of-Concept For Push–Pull Control Strategy For Dengue Vector Mosquitoes. Journal of the American Mosquito Control Association, 2017, 33, 293-300.	0.7	5
64	Effect of the Topical Repellent para-Menthane-3,8-diol on Blood Feeding Behavior and Fecundity of the Dengue Virus Vector Aedes aegypti. Insects, 2018, 9, 60.	2.2	5
65	Community-level impacts of spatial repellents for control of diseases vectored by Aedes aegypti mosquitoes. PLoS Computational Biology, 2020, 16, e1008190.	3.2	5
66	A Comparison Of Two Commercial Mosquito Traps for the Capture Of Malaria Vectors In Northern Belize, Central America1. Journal of the American Mosquito Control Association, 2014, 30, 175-183.	0.7	3
67	Current status of spatial repellents in the global vector control community. , 2022, , 267-278.		3
68	Scientific achievements and reflections after 20Âyears of vector biology and control research at the Pu Teuy mosquito field research station, Thailand. Malaria Journal, 2022, 21, 44.	2.3	3
69	Comparison of Experimental Hut Entrance and Exit Behavior BetweenAnopheles darlingifrom the Cayo District, Belize, and Zungarococha, Peru. Journal of the American Mosquito Control Association, 2013, 29, 319-327.	0.7	2
70	Dengue Virus-1 Infection Did Not Alter the Behavioral Response ofAedes aegypti(Diptera: Culicidae) to DEET. Journal of Medical Entomology, 2016, 53, 687-691.	1.8	2
71	Combining chemometric and phytochemical tools to isolate and characterize activity of <i>Vismia gracilis</i> compounds against <i>Aedes aegypti</i> . Natural Product Research, 2022, 36, 2620-2624.	1.8	2
72	A Delayed Release Mechanism for Mark–Release–Recapture Studies1. Journal of the American Mosquito Control Association, 2006, 22, 573-575.	0.7	1

#	Article	IF	CITATIONS
73	Comparison of a novel high-throughput screening system with the Bottle assay for evaluating insecticide toxicity. Journal of Pesticide Sciences, 2009, 34, 283-286.	1.4	1
74	Effects of Environmental Conditions on the Movement Patterns ofAedes aegypti(Diptera: Culicidae) into and Out of Experimental Huts in Thailand. Journal of Vector Ecology, 2009, 34, 267-275.	1.0	0
75	Title is missing!. , 2020, 16, e1008190.		Ο
76	Title is missing!. , 2020, 16, e1008190.		0
77	Title is missing!. , 2020, 16, e1008190.		Ο
78	Title is missing!. , 2020, 16, e1008190.		0
79	Title is missing!. , 2020, 16, e1008190.		Ο
80	Title is missing!. , 2020, 16, e1008190.		0