List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Male development of chromosomally female mice transgenic for Sry. Nature, 1991, 351, 117-121.	27.8	2,035
2	A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 1990, 346, 245-250.	27.8	1,552
3	Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell, 1993, 73, 1019-1030.	28.9	999
4	Retinoid Signaling Determines Germ Cell Fate in Mice. Science, 2006, 312, 596-600.	12.6	888
5	Global Disorders of Sex Development Update since 2006: Perceptions, Approach and Care. Hormone Research in Paediatrics, 2016, 85, 158-180.	1.8	852
6	Phylogeny of the SOX Family of Developmental Transcription Factors Based on Sequence and Structural Indicators. Developmental Biology, 2000, 227, 239-255.	2.0	851
7	SOX9 directly regulates the type-ll collagen gene. Nature Genetics, 1997, 16, 174-178.	21.4	847
8	Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 1990, 348, 450-452.	27.8	801
9	SOX9 Binds DNA, Activates Transcription, and Coexpresses with Type II Collagen during Chondrogenesis in the Mouse. Developmental Biology, 1997, 183, 108-121.	2.0	640
10	The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nature Genetics, 1995, 9, 15-20.	21.4	627
11	Sex Determination and Gonadal Development in Mammals. Physiological Reviews, 2007, 87, 1-28.	28.8	548
12	Sox18 induces development of the lymphatic vasculature in mice. Nature, 2008, 456, 643-647.	27.8	483
13	Twenty Pairs of Sox. Developmental Cell, 2002, 3, 167-170.	7.0	472
14	SOX9 Enhances Aggrecan Gene Promoter/Enhancer Activity and Is Up-regulated by Retinoic Acid in a Cartilage-derived Cell Line, TC6. Journal of Biological Chemistry, 2000, 275, 10738-10744.	3.4	426
15	Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes and Development, 2013, 27, 2409-2426.	5.9	326
16	Seeds of concern. Nature, 2004, 432, 48-52.	27.8	319
17	Retinoic acid, meiosis and germ cell fate in mammals. Development (Cambridge), 2007, 134, 3401-3411.	2.5	302
18	Ovary and Ovulation: Fresh and cryopreserved ovarian tissue samples from donors with lymphoma	0.9	299

transmit the cancer to graft recipients. Human Reproduction, 1996, 11, 1668-1673.

#	Article	IF	CITATIONS
19	<i>Sry</i> : the master switch in mammalian sex determination. Development (Cambridge), 2010, 137, 3921-3930.	2.5	281
20	Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Current Opinion in Genetics and Development, 2002, 12, 441-446.	3.3	279
21	Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone, 2005, 37, 313-322.	2.9	273
22	Genesis and Expansion of Metazoan Transcription Factor Gene Classes. Molecular Biology and Evolution, 2008, 25, 980-996.	8.9	262
23	Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental Biology, 2005, 287, 111-124.	2.0	251
24	Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biology, 2016, 17, 243.	8.8	241
25	Spatially dynamic expression of <i>Sry</i> in mouse genital ridges. Developmental Dynamics, 2001, 221, 201-205.	1.8	232
26	FGF9 Suppresses Meiosis and Promotes Male Germ Cell Fate in Mice. Developmental Cell, 2010, 19, 440-449.	7.0	221
27	Etiology of Ovarian Failure in Blepharophimosis Ptosis Epicanthus Inversus Syndrome: FOXL2 Is a Conserved, Early-Acting Gene in Vertebrate Ovarian Development. Endocrinology, 2003, 144, 3237-3243.	2.8	220
28	The UTX gene escapes X inactivation in mice and humans. Human Molecular Genetics, 1998, 7, 737-742.	2.9	218
29	Epigenetic Regulation of Mouse Sex Determination by the Histone Demethylase Jmjd1a. Science, 2013, 341, 1106-1109.	12.6	217
30	Seven new members of the <i>Sox</i> gene family expressed during mouse development. Nucleic Acids Research, 1993, 21, 744-744.	14.5	203
31	SOX9 Regulates Prostaglandin D Synthase Gene Transcription in Vivo to Ensure Testis Development. Journal of Biological Chemistry, 2007, 282, 10553-10560.	3.4	203
32	Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nature Genetics, 2000, 24, 434-437.	21.4	201
33	Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. Nature, 1989, 342, 940-942.	27.8	195
34	A critical time window of <i>Sry</i> action in gonadal sex determination in mice. Development (Cambridge), 2009, 136, 129-138.	2.5	189
35	The makings of maleness: towards an integrated view of male sexual development. Nature Reviews Genetics, 2006, 7, 620-631.	16.3	187
36	Expression of distinct RNAs from $3\hat{\epsilon}^2$ untranslated regions. Nucleic Acids Research, 2011, 39, 2393-2403.	14.5	185

#	Article	IF	CITATIONS
37	Sox18 and Sox7 play redundant roles in vascular development. Blood, 2008, 111, 2657-2666.	1.4	179
38	Redundant roles of <i>Sox17</i> and <i>Sox18</i> in postnatal angiogenesis in mice. Journal of Cell Science, 2006, 119, 3513-3526.	2.0	178
39	An H–YDb epitope is encoded by a novel mouse Y chromosome gene. Nature Genetics, 1996, 14, 474-478.	21.4	176
40	Expression of a linear Sry transcript in the mouse genital ridge. Nature Genetics, 1995, 10, 480-482.	21.4	165
41	Endothelial cell migration directs testis cord formation. Developmental Biology, 2009, 326, 112-120.	2.0	164
42	Germ cells enter meiosis in a rostro audal wave during development of the mouse ovary. Molecular Reproduction and Development, 2004, 68, 422-428.	2.0	157
43	Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos. Biochemical and Biophysical Research Communications, 2007, 360, 539-544.	2.1	155
44	SOX8 Is Expressed during Testis Differentiation in Mice and Synergizes with SF1 to Activate the Amh Promoter in Vitro. Journal of Biological Chemistry, 2003, 278, 28101-28108.	3.4	154
45	Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Human Molecular Genetics, 2010, 19, 506-516.	2.9	149
46	Delayed Sry and Sox9 expression in developing mouse gonads underlies B6-YDOM sex reversal. Developmental Biology, 2005, 278, 473-481.	2.0	146
47	TheSry-related HMG box-containing geneSox6is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Research, 1995, 23, 3365-3372.	14.5	143
48	Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Human Molecular Genetics, 2006, 15, 417-431.	2.9	142
49	Origin and diversity of the Sox transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene, 2004, 328, 177-186.	2.2	138
50	SoxF genes: Key players in the development of the cardio-vascular system. International Journal of Biochemistry and Cell Biology, 2010, 42, 445-448.	2.8	137
51	Initiating Meiosis: The Case for Retinoic Acid1. Biology of Reproduction, 2012, 86, 35.	2.7	134
52	Cbx2, a Polycomb Group Gene, Is Required for Sry Gene Expression in Mice. Endocrinology, 2012, 153, 913-924.	2.8	131
53	Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination. PLoS Biology, 2009, 7, e1000196.	5.6	130
54	Sox genes and cancer. Cytogenetic and Genome Research, 2004, 105, 442-447.	1.1	129

#	Article	IF	CITATIONS
55	Expression of theSox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. , 1997, 210, 79-86.		125
56	A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expression Patterns, 2007, 7, 680-699.	0.8	125
57	Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Developmental Biology, 2008, 8, 85.	2.1	125
58	Control of mammalian germ cell entry into meiosis. Molecular and Cellular Endocrinology, 2014, 382, 488-497.	3.2	123
59	Sry requires a CAG repeat domain for male sex determination in Mus musculus. Nature Genetics, 1999, 22, 405-408.	21.4	122
60	Sry and Sox9: mammalian testis-determining genes. Cellular and Molecular Life Sciences, 1999, 55, 839-856.	5.4	116
61	Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nature Communications, 2018, 9, 5319.	12.8	116
62	Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis. PLoS ONE, 2011, 6, e17793.	2.5	116
63	Mouse germ cell development: From specification to sex determination. Molecular and Cellular Endocrinology, 2010, 323, 76-93.	3.2	115
64	Switching on sex: transcriptional regulation of the testis-determining gene <i>Sry</i> . Development (Cambridge), 2014, 141, 2195-2205.	2.5	113
65	Mice Null for <i>Sox18</i> Are Viable and Display a Mild Coat Defect. Molecular and Cellular Biology, 2000, 20, 9331-9336.	2.3	106
66	Antagonism of the testis- and ovary-determining pathways during ovotestis development in mice. Mechanisms of Development, 2009, 126, 324-336.	1.7	102
67	Sex determination in mammalian germ cells: extrinsic versus intrinsic factors. Reproduction, 2010, 139, 943-958.	2.6	102
68	CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the neonatal mouse ovary. Developmental Biology, 2006, 293, 449-460.	2.0	99
69	Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development (Cambridge), 2012, 139, 4123-4132.	2.5	99
70	Coordinated expression of <i>scleraxis</i> and <i>Sox9</i> genes during embryonic development of tendons and cartilage. Journal of Orthopaedic Research, 2002, 20, 827-833.	2.3	98
71	SOX9 Regulates MicroRNA miR-202-5p/3p Expression During Mouse Testis Differentiation1. Biology of Reproduction, 2013, 89, 34.	2.7	97
72	Sry and the hesitant beginnings of male development. Developmental Biology, 2007, 302, 13-24.	2.0	95

#	Article	IF	CITATIONS
73	Widespread expression of the testis–determining gene SRY in a marsupial. Nature Genetics, 1995, 11, 347-349.	21.4	94
74	Structural and Functional Characterization of the Mouse Sox9 Promoter: Implications for Campomelic Dysplasia. Human Molecular Genetics, 1999, 8, 691-696.	2.9	93
75	Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Developmental Biology, 2008, 316, 359-370.	2.0	92
76	Location of the genes controlling H-Y antigen expression and testis determination on the mouse Y chromosome Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6442-6445.	7.1	89
77	FOXL2 and BMP2 Act Cooperatively to Regulate Follistatin Gene Expression during Ovarian Development. Endocrinology, 2011, 152, 272-280.	2.8	89
78	Conserved regulatory modules in the Sox9 testis-specific enhancer predict roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination. International Journal of Biochemistry and Cell Biology, 2010, 42, 472-477.	2.8	84
79	Antagonistic regulation of <i>Cyp26b1</i> by transcription factors SOX9/SF1 and FOXL2 during gonadal development in mice. FASEB Journal, 2011, 25, 3561-3569.	0.5	83
80	<i>Sox7</i> and <i>Sox17</i> are strain-specific modifiers of the lymphangiogenic defects caused by <i>Sox18</i> dysfunction in mice. Development (Cambridge), 2009, 136, 2385-2391.	2.5	82
81	Threeâ€dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. Developmental Dynamics, 2009, 238, 1033-1041.	1.8	82
82	Female-to-male sex reversal in mice caused by transgenic overexpression of <i>Dmrt1</i> . Development (Cambridge), 2015, 142, 1083-8.	2.5	81
83	The Human SOX11 Gene: Cloning, Chromosomal Assignment and Tissue Expression. Genomics, 1995, 29, 541-545.	2.9	80
84	SOX18 and the Transcriptional Regulation of Blood Vessel Development. Trends in Cardiovascular Medicine, 2001, 11, 318-324.	4.9	78
85	Effect of Disrupted SOX18 Transcription Factor Function on Tumor Growth, Vascularization, and Endothelial Development. Journal of the National Cancer Institute, 2006, 98, 1060-1067.	6.3	78
86	Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice. Developmental Biology, 2012, 364, 89-98.	2.0	78
87	Trans-activation and DNA-binding properties of the transcription factor, Sox-18. Nucleic Acids Research, 1995, 23, 2626-2628.	14.5	77
88	Cloning and characterisation of the Sry-related transcription factor gene Sox8. Nucleic Acids Research, 2000, 28, 1473-1480.	14.5	75
89	Tumor Lymphangiogenesis as a Potential Therapeutic Target. Journal of Oncology, 2012, 2012, 1-23.	1.3	74
90	Loss of Wnt5a Disrupts Primordial Germ Cell Migration and Male Sexual Development in Mice1. Biology of Reproduction, 2012, 86, 1-12.	2.7	73

#	Article	IF	CITATIONS
91	The Transcription Factors Steroidogenic Factor-1 and SOX9 Regulate Expression of Vanin-1 during Mouse Testis Development. Journal of Biological Chemistry, 2005, 280, 5917-5923.	3.4	72
92	Sex determination: a tale of two Sox genes. Trends in Genetics, 2005, 21, 367-370.	6.7	68
93	ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries. Nature Communications, 2016, 7, 10845.	12.8	68
94	Sex Determination in the Mammalian Germline. Annual Review of Genetics, 2017, 51, 265-285.	7.6	68
95	The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. Trends in Genetics, 2004, 20, 4-8.	6.7	66
96	Dexamethasone enhances SOX9 expression in chondrocytes. Journal of Endocrinology, 2001, 169, 573-579.	2.6	65
97	VEGFD regulates blood vascular development by modulating SOX18 activity. Blood, 2014, 123, 1102-1112.	1.4	65
98	A subtractive gene expression screen suggests a role forvanin-1 in testis development in mice. Genesis, 2000, 27, 124-135.	1.6	64
99	Identification of Suitable Normalizing Genes for Quantitative Real-Time RT-PCR Analysis of Gene Expression in Fetal Mouse Gonads. Sexual Development, 2009, 3, 194-204.	2.0	63
100	Widespread expression of human alpha 1-antitrypsin in transgenic mice revealed by in situ hybridization Genes and Development, 1989, 3, 16-25.	5.9	62
101	A cell-autonomous role for WT1 in regulating Sry in vivo. Human Molecular Genetics, 2009, 18, 3429-3438.	2.9	62
102	Wnt Signaling in Ovarian Development Inhibits Sf1 Activation of Sox9 via the Tesco Enhancer. Endocrinology, 2012, 153, 901-912.	2.8	62
103	A factor produced by feeder cells which inhibits embryonal carcinoma cell differentiation *1Characterization and partial purification. Experimental Cell Research, 1984, 154, 233-242.	2.6	61
104	Regulation of male sexual development by <i>Sry</i> and <i>Sox9</i> . The Journal of Experimental Zoology, 2001, 290, 463-474.	1.4	61
105	Sox18 mutations in theragged mouse allelesragged-like andopossum. Genesis, 2003, 36, 1-6.	1.6	59
106	Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. Human Molecular Genetics, 2011, 20, 2213-2224.	2.9	59
107	Male sex determination: insights into molecular mechanisms. Asian Journal of Andrology, 2012, 14, 164-171.	1.6	59
108	Intrauterine Exposure to Paracetamol and Aniline Impairs Female Reproductive Development by Reducing Follicle Reserves and Fertility. Toxicological Sciences, 2016, 150, 178-189.	3.1	59

#	Article	IF	CITATIONS
109	SOX18 Directly Interacts with MEF2C in Endothelial Cells. Biochemical and Biophysical Research Communications, 2001, 287, 493-500.	2.1	56
110	Genetic Ablation of SOX18 Function Suppresses Tumor Lymphangiogenesis and Metastasis of Melanoma in Mice. Cancer Research, 2012, 72, 3105-3114.	0.9	56
111	<i>Dppa3</i> is a marker of pluripotency and has a human homologue that is expressed in germ cell tumours. Cytogenetic and Genome Research, 2003, 101, 261-265.	1.1	55
112	Retinoblastoma 1 Protein Modulates XY Germ Cell Entry into G1/G0 Arrest During Fetal Development in Mice1. Biology of Reproduction, 2010, 82, 433-443.	2.7	55
113	The Molecular Genetics of Sex Determination and Sex Reversal in Mammals. Seminars in Reproductive Medicine, 2012, 30, 351-363.	1.1	55
114	Sequence and expression of Sox-18 encoding a new HMG-box transcription factor. Gene, 1995, 161, 223-225.	2.2	54
115	Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone. PLoS Genetics, 2017, 13, e1006520.	3.5	52
116	The HMG Box Transcription Factor Gene Sox14 Marks a Novel Subset of Ventral Interneurons and Is Regulated by Sonic Hedgehog. Developmental Biology, 2000, 219, 142-153.	2.0	51
117	Purification and Transcriptomic Analysis of Mouse Fetal Leydig Cells Reveals Candidate Genes for Specification of Gonadal Steroidogenic Cells1. Biology of Reproduction, 2015, 92, 145.	2.7	51
118	SOX30 is required for male fertility in mice. Scientific Reports, 2017, 7, 17619.	3.3	50
119	Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. ELife, 2017, 6, .	6.0	50
120	The VCAM-1 Gene That Encodes the Vascular Cell Adhesion Molecule Is a Target of the Sry-related High Mobility Group Box Gene, Sox18. Journal of Biological Chemistry, 2004, 279, 5314-5322.	3.4	49
121	Sox18 Is Transiently Expressed during Angiogenesis in Granulation Tissue of Skin Wounds with an Identical Expression Pattern to Flk-1 mRNA. Laboratory Investigation, 2001, 81, 937-943.	3.7	48
122	Evaluation of candidate markers for the peritubular myoid cell lineage in the developing mouse testis. Reproduction, 2005, 130, 509-516.	2.6	48
123	Vascular defects in a mouse model of hypotrichosis-lymphedema-telangiectasia syndrome indicate a role for SOX18 in blood vessel maturation. Human Molecular Genetics, 2009, 18, 2839-2850.	2.9	48
124	A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. European Journal of Human Genetics, 2012, 20, 348-351.	2.8	48
125	SRY protein function in sex determination: thinking outside the box. Chromosome Research, 2012, 20, 153-162.	2.2	48
126	Genomic screen for genes involved in mammalian craniofacial development. Genesis, 2003, 35, 73-87.	1.6	47

8

#	Article	IF	CITATIONS
127	Up-regulation of SOX9 in human sex-determining region on the Y chromosome (SRY)-negative XX males. Clinical Endocrinology, 2008, 68, 791-799.	2.4	46
128	Gonadal defects in Cited2 -mutant mice indicate a role for SF1 in both testis and ovary differentiation. International Journal of Developmental Biology, 2010, 54, 683-689.	0.6	46
129	Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Conads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary. PLoS ONE, 2012, 7, e52620.	2.5	46
130	Retinoic Acid Antagonizes Testis Development in Mice. Cell Reports, 2018, 24, 1330-1341.	6.4	46
131	<i>In Situ</i> Hybridization of Whole-Mount Embryos. , 2006, 326, 103-114.		45
132	The Cerebellin 4 Precursor Gene Is a Direct Target of SRY and SOX9 in Mice1. Biology of Reproduction, 2009, 80, 1178-1188.	2.7	44
133	FOXL2 transcriptionally represses <i>Sf1</i> expression by antagonizing WT1 during ovarian development in mice. FASEB Journal, 2014, 28, 2020-2028.	0.5	44
134	<i>FGFR2</i> mutation in 46,XY sex reversal with craniosynostosis. Human Molecular Genetics, 2015, 24, 6699-6710.	2.9	44
135	Maleâ€specific expression of <i>Aldh1a1</i> in mouse and chicken fetal testes: Implications for retinoid balance in gonad development. Developmental Dynamics, 2009, 238, 2073-2080.	1.8	43
136	Sex determination: the power of DMRT1. Trends in Genetics, 2009, 25, 479-481.	6.7	42
137	Small-Molecule Inhibitors of the SOX18 Transcription Factor. Cell Chemical Biology, 2017, 24, 346-359.	5.2	42
138	Identification of Novel Markers of Mouse Fetal Ovary Development. PLoS ONE, 2012, 7, e41683.	2.5	42
139	Control of retinoid levels by CYP26B1 is important for lymphatic vascular development in the mouse embryo. Developmental Biology, 2014, 386, 25-33.	2.0	41
140	Expression of the transcription factors <i>Otlx2, Barx1</i> and <i>Sox9</i> during mouse odontogenesis. European Journal of Oral Sciences, 1998, 106, 112-116.	1.5	40
141	Testis Determination Requires a Specific FGFR2 Isoform to Repress FOXL2. Endocrinology, 2017, 158, 3832-3843.	2.8	40
142	SOX4 regulates gonad morphogenesis and promotes male germ cell differentiation in mice. Developmental Biology, 2017, 423, 46-56.	2.0	39
143	Transcriptomic analysis of mRNA expression and alternative splicing during mouse sex determination. Molecular and Cellular Endocrinology, 2018, 478, 84-96.	3.2	39
144	The mouse <i>Sry</i> locus harbors a cryptic exon that is essential for male sex determination. Science, 2020, 370, 121-124.	12.6	38

#	Article	IF	CITATIONS
145	Cloning and functional analysis of the Sry -related HMG box gene, Sox18. Gene, 2001, 262, 239-247.	2.2	37
146	Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. Developmental Dynamics, 2002, 225, 95-99.	1.8	37
147	ROBO2 restricts the nephrogenic field and regulates Wolffian duct–nephrogenic cord separation. Developmental Biology, 2015, 404, 88-102.	2.0	37
148	Structure–function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11768-11773.	7.1	36
149	Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Research, 2009, 17, 1015-1024.	2.2	35
150	Expression of the tudor-related gene Tdrd5 during development of the male germline in mice. Gene Expression Patterns, 2004, 4, 701-705.	0.8	34
151	Transcriptional suppression ofSox9 expression in chondrocytes by retinoic acid. Journal of Cellular Biochemistry, 2001, 81, 71-78.	2.6	33
152	The delicate balance between male and female sex determining pathways: potential for disruption of early steps in sexual development. Journal of Developmental and Physical Disabilities, 2010, 33, 252-258.	3.6	32
153	Transcription Factors ER71/ETV2 and SOX9 Participate in a Positive Feedback Loop in Fetal and Adult Mouse Testis. Journal of Biological Chemistry, 2012, 287, 23657-23666.	3.4	32
154	The molecular biology of SRY and its role in sex determination in mammals. Reproduction, Fertility and Development, 1995, 7, 713.	0.4	31
155	Molecular characterization of three gonad cell lines. Cytogenetic and Genome Research, 2003, 101, 242-249.	1.1	31
156	Sex Determination: The Fishy Tale of Dmrt1. Current Biology, 2003, 13, R177-R179.	3.9	30
157	The Rhox Homeobox Gene Family Shows Sexually Dimorphic and Dynamic Expression During Mouse Embryonic Gonad Development1. Biology of Reproduction, 2008, 79, 468-474.	2.7	30
158	Uncovering Gene Regulatory Networks During Mouse Fetal Germ Cell Development. Biology of Reproduction, 2011, 84, 790-800.	2.7	29
159	Regulation of germ cell meiosis in the fetal ovary. International Journal of Developmental Biology, 2012, 56, 779-787.	0.6	29
160	Developmental Expression of Musashi-1 and Musashi-2 RNA-Binding Proteins During Spermatogenesis: Analysis of the Deleterious Effects of Dysregulated Expression1. Biology of Reproduction, 2014, 90, 92.	2.7	29
161	Cell cycle analysis of fetal germ cells during sex differentiation in mice. Biology of the Cell, 2009, 101, 587-598.	2.0	28

162 Sry, Sox9 and mammalian sex determination. Exs, 2001, , 25-56.

1.4 28

#	Article	IF	CITATIONS
163	Analysis of the role ofAmh andFra1 in theSry regulatory pathway. Molecular Reproduction and Development, 1996, 44, 153-158.	2.0	27
164	Involvement of Homeobox Genes in Mammalian Sexual Development. Sexual Development, 2007, 1, 12-23.	2.0	27
165	Whole exome sequencing combined with linkage analysis identifies a novel 3 bp deletion in NR5A1. European Journal of Human Genetics, 2015, 23, 486-493.	2.8	27
166	Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors. Molecular Oncology, 2016, 10, 526-537.	4.6	27
167	A Male-Specific Role for p38 Mitogen-Activated Protein Kinase in Germ Cell Sex Differentiation in Mice1. Biology of Reproduction, 2010, 83, 1005-1014.	2.7	26
168	Genome-Wide Off-Target Analysis in CRISPR-Cas9 Modified Mice and Their Offspring. G3: Genes, Genomes, Genetics, 2019, 9, 3645-3651.	1.8	26
169	Characterisation of Urogenital Ridge Gene Expression in the Human Embryonal Carcinoma Cell Line NT2/D1. Sexual Development, 2007, 1, 114-126.	2.0	25
170	Nodal/Cripto signaling in fetal male germ cell development: implications for testicular germ cell tumors. International Journal of Developmental Biology, 2013, 57, 211-219.	0.6	25
171	RNA binding protein Musashi†directly targets Msi2 and Erh during early testis germ cell development and interacts with IPO5 upon translocation to the nucleus. FASEB Journal, 2015, 29, 2759-2768.	0.5	25
172	Characterisation ofCrim1 expression in the developing mouse urogenital tract reveals a sexually dimorphic gonadal expression pattern. Developmental Dynamics, 2000, 219, 582-587.	1.8	23
173	Endocardium differentiation through Sox17 expression in endocardium precursor cells regulates heart development in mice. Scientific Reports, 2019, 9, 11953.	3.3	23
174	Transcriptional Modulation of Mouse μ-Opioid Receptor Distal Promoter Activity by Sox18. Molecular Pharmacology, 2001, 59, 1486-1496.	2.3	22
175	Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Developmental Biology, 2014, 395, 342-354.	2.0	22
176	<i>Sox8</i> is expressed at similar levels in gonads of both sexes during the sex determining period in turtles. Developmental Dynamics, 2004, 231, 387-395.	1.8	21
177	Profiles of Gonadal Gene Expression in the Developing Bovine Embryo. Sexual Development, 2009, 3, 273-283.	2.0	21
178	Cloning and expression of candidate sexual development genes in the cane toad (<i>Bufo marinus</i>). Developmental Dynamics, 2009, 238, 2430-2441.	1.8	21
179	Origin and possible roles of the <i>Sox8</i> transcription factor gene during sexual development. Cytogenetic and Genome Research, 2003, 101, 212-218.	1.1	20

180 In Situ Hybridization of Whole-Mount Embryos. , 2000, 123, 279-290.

#	Article	IF	CITATIONS
181	Fine mapping of the neurally expressed gene SOX14 to human 3q23, relative to three congenital diseases. Human Genetics, 2000, 106, 432-439.	3.8	19
182	New insights into SRY regulation through identification of 5' conserved sequences. BMC Molecular Biology, 2008, 9, 85.	3.0	19
183	Ex vivo magnetofection: A novel strategy for the study of gene function in mouse organogenesis. Developmental Dynamics, 2009, 238, 956-964.	1.8	19
184	A <i>piggyBac</i> transposon―and gatewayâ€enhanced system for efficient BAC transgenesis. Developmental Dynamics, 2014, 243, 1086-1094.	1.8	19
185	Of sex and determination: marking 25â€years of Randy, the sex-reversed mouse. Development (Cambridge), 2016, 143, 1633-1637.	2.5	18
186	1 Sry and Mammalian Sex Determination. Current Topics in Developmental Biology, 1996, 34, 1-23.	2.2	17
187	Sertoli Cell Differentiation and Y-Chromosome Activity: A Developmental Study of X-Linked Transgene Activity in Sex-Reversed X/XSxraMouse Embryos. Developmental Biology, 1998, 199, 235-244.	2.0	17
188	The matricellular protein SPARC is internalized in Sertoli, Leydig, and germ cells during testis differentiation. Molecular Reproduction and Development, 2006, 73, 531-539.	2.0	17
189	Comparative proteomic analysis to study molecular events during gonad development in mice. Genesis, 2006, 44, 168-176.	1.6	17
190	Global Survey of Protein Expression during Gonadal Sex Determination in Mice. Molecular and Cellular Proteomics, 2009, 8, 2624-2641.	3.8	17
191	On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers?. Reproduction, 2015, 149, R181-R191.	2.6	17
192	The Curious World of Gonadal Development in Mammals. Current Topics in Developmental Biology, 2016, 116, 537-545.	2.2	17
193	New clues to the puzzle of mammalian sex determination. Genome Biology, 2001, 2, reviews1025.1.	9.6	16
194	Osteopontin and related SIBLING glycoprotein genes are expressed by Sertoli cells during mouse testis development. Developmental Dynamics, 2005, 233, 1488-1495.	1.8	16
195	Sex-specific expression of a novel gene Tmem184a during mouse testis differentiation. Reproduction, 2007, 133, 983-989.	2.6	16
196	Aard is specifically up-regulated in Sertoli cells during mouse testis differentiation. International Journal of Developmental Biology, 2007, 51, 255-258.	0.6	16
197	Identification of regulatory elements required for <i>Stra8</i> expression in fetal ovarian germ cells of the mouse. Development (Cambridge), 2021, 148, .	2.5	16
198	Alternative Splicing of the First Nucleotide Binding Fold of CFTR in Mouse Testes Is Associated with Specific Stages of Spermatogenesis. Genomics, 1994, 20, 517-518.	2.9	15

#	Article	IF	CITATIONS
199	TheSry-Related GeneSox18Maps to Distal Mouse Chromosome 2. Genomics, 1996, 36, 558-559.	2.9	15
200	Gonad development: Signals for sex. Current Biology, 2001, 11, R481-R483.	3.9	15
201	HMG box transcription factor geneHbp1 is expressed in germ cells of the developing mouse testis. Developmental Dynamics, 2004, 230, 366-370.	1.8	15
202	Functional analysis of the SRY—KRAB interaction in mouse sex determination. Biology of the Cell, 2009, 101, 55-67.	2.0	15
203	Expression and Functional Analysis of Dkk1 during Early Gonadal Development. Sexual Development, 2011, 5, 124-130.	2.0	15
204	Sox Factors Transcriptionally Regulate ROBO4 Gene Expression in Developing Vasculature in Zebrafish. Journal of Biological Chemistry, 2011, 286, 30740-30747.	3.4	15
205	CITED2 mutations potentially cause idiopathic premature ovarian failure. Translational Research, 2012, 160, 384-388.	5.0	15
206	SOX9 regulates expression of the male fertility gene Ets variant factor 5 (ETV5) during mammalian sex development. International Journal of Biochemistry and Cell Biology, 2016, 79, 41-51.	2.8	15
207	Sox18 expression in blood vessels and feather buds during chicken embryogenesis. Gene, 2001, 271, 151-158.	2.2	14
208	Searching for missing pieces of the sex-determination puzzle. The Journal of Experimental Zoology, 2001, 290, 517-522.	1.4	14
209	Comparative Analysis of Anti-Mouse SRY Antibodies. Sexual Development, 2007, 1, 305-310.	2.0	14
210	Loss of GGN Leads to Pre-Implantation Embryonic Lethality and Compromised Male Meiotic DNA Double Strand Break Repair in the Mouse. PLoS ONE, 2013, 8, e56955.	2.5	14
211	Structure, mapping, and expression of human SOX18. Mammalian Genome, 2000, 11, 1147-1149.	2.2	13
212	Regulation of Amh during sex determination in chickens: Sox gene expression in male and female gonads. Cellular and Molecular Life Sciences, 2005, 62, 2140-2146.	5.4	13
213	Inhibition of SRY-Calmodulin Complex Formation Induces Ectopic Expression of Ovarian Cell Markers in Developing XY Gonads. Endocrinology, 2011, 152, 2883-2893.	2.8	13
214	The nuclear import factor importin α4 can protect against oxidative stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2348-2356.	4.1	13
215	Reduced Activity of SRY and its Target Enhancer Sox9-TESCO in a Mouse Species with X*Y Sex Reversal. Scientific Reports, 2017, 7, 41378.	3.3	13
216	Analysis of Gene Function in Cultured Embryonic Mouse Gonads Using Nucleofection. Sexual Development, 2011, 5, 7-15.	2.0	12

#	Article	IF	CITATIONS
217	Precious Cargo: Regulation of Sex-Specific Germ Cell Development in Mice. Sexual Development, 2013, 7, 46-60.	2.0	12
218	Mutant NR5A1/SF-1 in patients with disorders of sex development shows defective activation of the <i>SOX9</i> TESCO enhancer. Human Mutation, 2018, 39, 1861-1874.	2.5	12
219	Testis-determining factor and Y-linked sex reversal. Current Opinion in Genetics and Development, 1991, 1, 30-33.	3.3	11
220	Sox8 and Sertoli-cell Function. Annals of the New York Academy of Sciences, 2007, 1120, 104-113.	3.8	11
221	Germ cells influence cord formation and leydig cell gene expression during mouse testis development. Developmental Dynamics, 2016, 245, 433-444.	1.8	11
222	Sox9-dependent expression of Gstm6 in Sertoli cells during testis development in mice. Reproduction, 2009, 137, 481-486.	2.6	10
223	Aetiology of the Skeletal Dysmorphology Syndrome Campomelic Dysplasia: Expression of the <i>Sox9</i> Gene during Chondrogenesis in Mouse Embryosa. Annals of the New York Academy of Sciences, 1996, 785, 350-352.	3.8	9
224	Protein tyrosine kinase 2 beta (PTK2B), but not focal adhesion kinase (FAK), is expressed in a sexually dimorphic pattern in developing mouse gonads. Developmental Dynamics, 2010, 239, 2735-2741.	1.8	9
225	Expansion of the Ago gene family in the teleost clade. Development Genes and Evolution, 2011, 221, 95-104.	0.9	9
226	<i>Prokr2-</i> Deficient Mice Display Vascular Dysmorphology of the Fetal Testes: Potential Implications for Kallmann Syndrome Aetiology. Sexual Development, 2011, 5, 294-303.	2.0	9
227	Exclusion of Sox9 as a candidate for the mouse mutant Tail-short. Mammalian Genome, 1996, 7, 481-485.	2.2	8
228	Testis Development, Fertility, and Survival in Ethanolamine Kinase 2-Deficient Mice. Endocrinology, 2008, 149, 6176-6186.	2.8	8
229	Cytoplasmic Plaque Formation in Hemidesmosome Development Is Dependent on SoxF Transcription Factor Function. PLoS ONE, 2012, 7, e43857.	2.5	8
230	Rapid Screening of Gene Function by Systemic Delivery of Morpholino Oligonucleotides to Live Mouse Embryos. PLoS ONE, 2015, 10, e0114932.	2.5	8
231	Specific interaction with the nuclear transporter importin α2 can modulate paraspeckle protein 1 delivery to nuclear paraspeckles. Molecular Biology of the Cell, 2015, 26, 1543-1558.	2.1	8
232	Ovotesticular disorders of sex development in FGF9 mouse models of human synostosis syndromes. Human Molecular Genetics, 2020, 29, 2148-2161.	2.9	8
233	Pluripotent differentiation of single F9 embryonal carcinoma cells. Experimental Cell Research, 1987, 168, 567-571.	2.6	7
234	RNA binding protein Musashiâ€2 regulates PIWIL1 and TBX1 in mouse spermatogenesis. Journal of Cellular Physiology, 2018, 233, 3262-3273.	4.1	7

#	Article	IF	CITATIONS
235	A dominant-negative SOX18 mutant disrupts multiple regulatory layers essential to transcription factor activity. Nucleic Acids Research, 2021, 49, 10931-10955.	14.5	7
236	The response of embryonal carcinoma cells to retinoic acid depends on colony size. Differentiation, 1986, 31, 55-60.	1.9	6
237	Molecular characterization of the Bidder's organ in the cane toad (<i>Bufo marinus</i>). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 503-513.	1.3	6
238	Tmem26 Is Dynamically Expressed during Palate and Limb Development but Is Not Required for Embryonic Survival. PLoS ONE, 2011, 6, e25228.	2.5	6
239	Cell Cycle Control of Germ Cell Differentiation. Results and Problems in Cell Differentiation, 2011, 53, 269-308.	0.7	6
240	Gender benders. Nature, 2003, 426, 241-241.	27.8	5
241	Pisrt1, a gene implicated in XX sex reversal, is expressed in gonads of both sexes during mouse development. Molecular Genetics and Metabolism, 2005, 86, 286-292.	1.1	5
242	Expression-Based Strategies for Discovery of Genes Involved in Testis and Ovary Development. Novartis Foundation Symposium, 2008, , 240-252.	1.1	5
243	Conservation analysis of sequences flanking the testis-determining gene Sry in 17 mammalian species. BMC Developmental Biology, 2015, 15, 34.	2.1	5
244	A Site-Specific, Single-Copy Transgenesis Strategy to Identify 5′ Regulatory Sequences of the Mouse Testis-Determining Gene Sry. PLoS ONE, 2014, 9, e94813.	2.5	5
245	Redd1 Is a Novel Marker of Testis Development but Is Not Required for Normal Male Reproduction. Sexual Development, 2012, 6, 223-230.	2.0	4
246	A differentiation-defective concanavalin-A-resistant variant of a pluripotent embryonal carcinoma cell line. Differentiation, 1987, 34, 216-221.	1.9	3
247	Genetic basis of human testicular germ cell cancer: insights from the fruitfly and mouse. Cell and Tissue Research, 2005, 322, 5-19.	2.9	3
248	<i>Nr5a1</i> suppression during the fetal period optimizes ovarian development by fine-tuning of Notch signaling. Journal of Cell Science, 2019, 132, .	2.0	3
249	<i>Pkd1</i> and <i>Wnt5a</i> genetically interact to control lymphatic vascular morphogenesis in mice. Developmental Dynamics, 2022, 251, 336-349.	1.8	3
250	Mice Lacking Hbp1 Function Are Viable and Fertile. PLoS ONE, 2017, 12, e0170576.	2.5	3
251	Two ovarian candidate enhancers, identified by time series enhancer RNA analyses, harbor rare genetic variations identified in ovarian insufficiency. Human Molecular Genetics, 2022, 31, 2223-2235.	2.9	3
252	Generation and mutational analysis of a transgenic mouse model of human <i>SRY</i> . Human Mutation, 2022, 43, 362-379.	2.5	3

#	Article	IF	CITATIONS
253	Preface. Current Topics in Developmental Biology, 2010, 90, xiii-xiv.	2.2	2
254	Analysis of the role of Amh and Fra1 in the Sry regulatory pathway. , 1996, 44, 153.		2
255	Functional Analysis of Mmd2 and Related PAQR Genes During Sex Determination in Mice. Sexual Development, 2022, 16, 270-282.	2.0	2
256	Mammalian sex-determining genes. Current Opinion in Biotechnology, 1992, 3, 603-606.	6.6	1
257	Sox14 maps to mouse Chromosome 9 and shows no mutations in the neurological mouse mutants ducky and tippy. Mammalian Genome, 2000, 11, 231-233.	2.2	1
258	Development of the Testis. , 2017, , .		1
259	Sex-Determining Cascades in Gonadal Development: Insights from Ovotestes Biology of Reproduction, 2008, 78, 278-278.	2.7	1
260	Insights into the Aetiology of Ovotesticular DSD from Studies of Mouse Ovotestes. Advances in Experimental Medicine and Biology, 2011, 707, 55-56.	1.6	1
261	Analysis of Gene Expression by PCR. , 1993, 18, 345-354.		0
262	Sox Genes: At the Heart of Endothelial Transcription. , 0, , 861-867.		0
263	GUDMAP - An Online GenitoUrinary Resource. Nature Precedings, 2009, , .	0.1	0
264	ApiggyBactransposon- and gateway-enhanced system for efficient BAC transgenesis. Developmental Dynamics, 2014, 243, C1-C1.	1.8	0
265	Gonads–Müllerian Ducts. , 2004, , 345-357		0
266	Making waves down under: the Australian Developmental Biology Workshop. International Journal of Developmental Biology, 2002, 46, 363-4.	0.6	0