Michael E Hood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9278250/publications.pdf Version: 2024-02-01

MICHAEL F HOOD

#	Article	IF	CITATIONS
1	Onset and stepwise extensions of recombination suppression are common in matingâ€ŧype chromosomes of <i>Microbotryum</i> antherâ€smut fungi. Journal of Evolutionary Biology, 2022, 35, 1619-1634.	1.7	11
2	Tempo of Degeneration Across Independently Evolved Nonrecombining Regions. Molecular Biology and Evolution, 2022, 39, .	8.9	9
3	Vector preference and heterogeneity in host sex ratio can affect pathogen spread in natural plant populations. Ecology, 2021, 102, e03246.	3.2	4
4	Recombination suppression and evolutionary strata around matingâ€ŧype loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. New Phytologist, 2021, 229, 2470-2491.	7.3	46
5	John Leigh, Lydia Becker and their shared botanical interests. Archives of Natural History, 2021, 48, 62-76.	0.3	1
6	From generalist to specialists: Variation in the host range and performance of antherâ€smut pathogens on <i>Dianthus</i> [*] . Evolution; International Journal of Organic Evolution, 2021, 75, 2494-2508.	2.3	6
7	Resistance Correlations Influence Infection by Foreign Pathogens. American Naturalist, 2021, 198, 206-218.	2.1	4
8	Higher Gene Flow in Sex-Related Chromosomes than in Autosomes during Fungal Divergence. Molecular Biology and Evolution, 2020, 37, 668-682.	8.9	19
9	Meiotic recombination in the offspring of Microbotryum hybrids and its impact on pathogenicity. BMC Evolutionary Biology, 2020, 20, 123.	3.2	2
10	Exploring density―and frequencyâ€dependent interactions experimentally: An r program for generating hexagonal fan designs. Methods in Ecology and Evolution, 2020, 11, 678-683.	5.2	2
11	Differential Gene Expression between Fungal Mating Types Is Associated with Sequence Degeneration. Genome Biology and Evolution, 2020, 12, 243-258.	2.5	11
12	Mining new sources of natural history observations for disease interactions. American Journal of Botany, 2020, 107, 3-11.	1.7	11
13	ls there a diseaseâ€free halo at species range limits? The codistribution of antherâ€smut disease and its host species. Journal of Ecology, 2019, 107, 1-11.	4.0	21
14	Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics. Annual Review of Phytopathology, 2019, 57, 431-457.	7.8	23
15	Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Research, 2019, 29, 944-953.	5.5	21
16	Sympatry and interference of divergent Microbotryum pathogen species. Ecology and Evolution, 2019, 9, 5457-5467.	1.9	9
17	Specificity and seasonal prevalence of anther smut disease <i>Microbotryum</i> on sympatric Himalayan <i>Silene</i> species. Journal of Evolutionary Biology, 2019, 32, 451-462.	1.7	5
18	The role of infectious disease in the evolution of females: Evidence from antherâ€smut disease on a gynodioecious alpine carnation*. Evolution; International Journal of Organic Evolution, 2019, 73, 497-510.	2.3	6

MICHAEL E HOOD

#	Article	IF	CITATIONS
19	Multiple infections, relatedness and virulence in the antherâ€smut fungus castrating <i>Saponaria</i> plants. Molecular Ecology, 2018, 27, 4947-4959.	3.9	5
20	Multiple convergent supergene evolution events in mating-type chromosomes. Nature Communications, 2018, 9, 2000.	12.8	81
21	Effect of the antherâ€smut fungus <i>Microbotryum</i> on the juvenile growth of its host <i>Silene latifolia</i> . American Journal of Botany, 2018, 105, 1088-1095.	1.7	10
22	Coâ€occurrence among three divergent plantâ€castrating fungi in the same <i>Silene</i> host species. Molecular Ecology, 2018, 27, 3357-3370.	3.9	17
23	Linnaeus, smut disease and living contagion. Archives of Natural History, 2018, 45, 213-232.	0.3	4
24	Coâ€occurrence and hybridization of antherâ€smut pathogens specialized on Dianthus hosts. Molecular Ecology, 2017, 26, 1877-1890.	3.9	28
25	Transmission and temporal dynamics of antherâ€smut disease (<i>Microbotryum</i>) on alpine carnation (<i>Dianthus pavonius</i>). Journal of Ecology, 2017, 105, 1413-1424.	4.0	45
26	Fungal Sex: The Basidiomycota. Microbiology Spectrum, 2017, 5, .	3.0	82
27	Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7067-7072.	7.1	92
28	Massive Expansion of Gypsy-Like Retrotransposons in Microbotryum Fungi. Genome Biology and Evolution, 2017, 9, 363-371.	2.5	17
29	Distribution and population structure of the anther smut <i><scp>M</scp>icrobotryum silenesâ€acaulis</i> parasitizing an arctic–alpine plant. Molecular Ecology, 2016, 25, 811-824.	3.9	17
30	Lower prevalence but similar fitness in a parasitic fungus at higher radiation levels near Chernobyl. Molecular Ecology, 2016, 25, 3370-3383.	3.9	9
31	Strong phylogeographic coâ€structure between the antherâ€smut fungus and its white campion host. New Phytologist, 2016, 212, 668-679.	7.3	36
32	Breaking linkage between mating compatibility factors: Tetrapolarity in <i>Microbotryum</i> . Evolution; International Journal of Organic Evolution, 2015, 69, 2561-2572.	2.3	13
33	Degeneration of the Nonrecombining Regions in the Mating-Type Chromosomes of the Anther-Smut Fungi. Molecular Biology and Evolution, 2015, 32, 928-943.	8.9	49
34	Rate of resistance evolution and polymorphism in long- and short-lived hosts. Evolution; International Journal of Organic Evolution, 2015, 69, 551-560.	2.3	14
35	Chaos of Rearrangements in the Mating-Type Chromosomes of the Anther-Smut Fungus <i>Microbotryum lychnidis-dioicae</i> . Genetics, 2015, 200, 1275-1284.	2.9	78
36	Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics, 2015, 16, 461.	2.8	58

MICHAEL E HOOD

#	Article	IF	CITATIONS
37	Contrasted patterns in mating-type chromosomes in fungi: Hotspots versus coldspots of recombination. Fungal Biology Reviews, 2015, 29, 220-229.	4.7	40
38	Performance of a Hybrid Fungal Pathogen on Pure-Species and Hybrid Host Plants. International Journal of Plant Sciences, 2014, 175, 724-730.	1.3	13
39	Experimental hybridization and backcrossing reveal forces of reproductive isolation in Microbotryum. BMC Evolutionary Biology, 2013, 13, 224.	3.2	14
40	History of the invasion of the anther smut pathogen on S ilene latifolia in N orth A merica. New Phytologist, 2013, 198, 946-956.	7.3	33
41	Lifeâ€history strategy defends against disease and may select against physiological resistance. Ecology and Evolution, 2013, 3, 1741-1750.	1.9	11
42	Extensive Divergence Between Mating-Type Chromosomes of the Anther-Smut Fungus. Genetics, 2013, 193, 309-315.	2.9	55
43	Patterns of Repeat-Induced Point Mutation in Transposable Elements of Basidiomycete Fungi. Genome Biology and Evolution, 2012, 4, 240-247.	2.5	64
44	Variation in resistance to multiple pathogen species: anther smuts of <i><scp>S</scp>ilene uniflora</i> . Ecology and Evolution, 2012, 2, 2304-2314.	1.9	26
45	LINKAGE TO THE MATING-TYPE LOCUS ACROSS THE GENUS <i>MICROBOTRYUM</i> : INSIGHTS INTO NONRECOMBINING CHROMOSOMES. Evolution; International Journal of Organic Evolution, 2012, 66, 3519-3533.	2.3	32
46	Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biological Reviews, 2011, 86, 421-442.	10.4	204
47	COMPETITION, COOPERATION AMONG KIN, AND VIRULENCE IN MULTIPLE INFECTIONS. Evolution; International Journal of Organic Evolution, 2011, 65, 1357-1366.	2.3	54
48	Maintenance of Fungal Pathogen Species That Are Specialized to Different Hosts: Allopatric Divergence and Introgression through Secondary Contact. Molecular Biology and Evolution, 2011, 28, 459-471.	8.9	79
49	Distribution of the antherâ€smut pathogen <i>Microbotryum</i> on species of the Caryophyllaceae. New Phytologist, 2010, 187, 217-229.	7.3	73
50	Loss of pathogens in threatened plant species. Oikos, 2010, 119, 1919-1928.	2.7	19
51	Using phylogenies of pheromone receptor genes in the <i>Microbotryum violaceum</i> species complex to investigate possible speciation by hybridization. Mycologia, 2010, 102, 689-696.	1.9	28
52	Glacial Refugia in Pathogens: European Genetic Structure of Anther Smut Pathogens on Silene latifolia and Silene dioica. PLoS Pathogens, 2010, 6, e1001229.	4.7	70
53	Ancient <i>Trans</i> -specific Polymorphism at Pheromone Receptor Genes in Basidiomycetes. Genetics, 2009, 181, 209-223.	2.9	68
54	Within-host competitive exclusion among species of the anther smut pathogen. BMC Ecology, 2009, 9, 11.	3.0	26

MICHAEL E HOOD

#	Article	IF	CITATIONS
55	Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation. BMC Evolutionary Biology, 2008, 8, 100.	3.2	116
56	Speciation in fungi. Fungal Genetics and Biology, 2008, 45, 791-802.	2.1	281
57	Mating System of the Anther Smut Fungus <i>Microbotryum violaceum</i> : Selfing under Heterothallism. Eukaryotic Cell, 2008, 7, 765-775.	3.4	129
58	Multiple Infections by the Anther Smut Pathogen Are Frequent and Involve Related Strains. PLoS Pathogens, 2007, 3, e176.	4.7	86
59	PHYLOGENETIC EVIDENCE OF HOST-SPECIFIC CRYPTIC SPECIES IN THE ANTHER SMUT FUNGUS. Evolution; International Journal of Organic Evolution, 2007, 61, 15-26.	2.3	209
60	EVOLUTION OF REPRODUCTIVE ISOLATION WITHIN A PARASITIC FUNGAL SPECIES COMPLEX. Evolution; International Journal of Organic Evolution, 2007, 61, 1781-1787.	2.3	66
61	Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes. BMC Genomics, 2007, 8, 272.	2.8	30
62	Tissue Culture and Quantification of Individualâ€Level Resistance toÂAntherâ€Smut Disease in Silene vulgaris. International Journal of Plant Sciences, 2007, 168, 415-419.	1.3	15
63	THE EVOLUTION OF INTRATETRAD MATING RATES. Evolution; International Journal of Organic Evolution, 2005, 59, 2525-2532.	2.3	20
64	Repetitive DNA in the automictic fungus Microbotryum violaceum. Genetica, 2005, 124, 1-10.	1.1	54
65	Repeat-Induced Point Mutation and the Population Structure of Transposable Elements in Microbotryum violaceum. Genetics, 2005, 170, 1081-1089.	2.9	66
66	The evolution of intratetrad mating rates. Evolution; International Journal of Organic Evolution, 2005, 59, 2525-32.	2.3	13
67	Shared Forces of Sex Chromosome Evolution in Haploid-Mating and Diploid-Mating OrganismsSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under the accession nos. BZ81929 and BZ782612 Genetics, 2004, 168, 141-146.	2.9	63
68	Mating Within the Meiotic Tetrad and the Maintenance of Genomic Heterozygosity. Genetics, 2004, 166, 1751-1759.	2.9	67
69	Mating Within the Meiotic Tetrad and the Maintenance of Genomic Heterozygosity. Genetics, 2004, 166, 1751-1759.	2.9	21
70	Karyotypic similarity identifies multiple host-shifts of a pathogenic fungus in natural populations. Infection, Genetics and Evolution, 2003, 2, 167-172.	2.3	30
71	Herbarium studies on the distribution of antherâ€smut fungus (<i>Microbotryum violaceum</i>) and <i>Silene</i> species (Caryophyllaceae) in the eastern United States. American Journal of Botany, 2003, 90, 1522-1531.	1.7	57
72	Plant species descriptions show signs of disease. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S156-8.	2.6	13

Michael E Hood

#	Article	IF	CITATIONS
73	The Ecology and Genetics of a Host Shift:Microbotryumas a Model System. American Naturalist, 2002, 160, S40-S53.	2.1	123
74	Dimorphic Mating-Type Chromosomes in the Fungus <i>Microbotryum violaceum</i> . Genetics, 2002, 160, 457-461.	2.9	79
75	Differences in teliospore germination patterns of Microbotryum violaceum from European and North American Silene species. Mycological Research, 2001, 105, 532-536.	2.5	9
76	Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in Microbotryum violaceum (=Ustilago violacea). Heredity, 2000, 85, 231-241.	2.6	90
77	Theoretical Population Genetics of Mating-Type Linked Haplo-Lethal Alleles. International Journal of Plant Sciences, 1998, 159, 192-198.	1.3	26
78	Fungal Sex: The Basidiomycota. , 0, , 147-175.		20