Seongwoo Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9278086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Erbium:Ytterbium Codoped Large-Core Fiber Laser With 297-W Continuous-Wave Output Power. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 573-579.	2.9	164
2	Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation. Optics Letters, 2007, 32, 1626.	3.3	144
3	Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance. Optics Express, 2008, 16, 21032.	3.4	91
4	MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers. Journal of Non-Crystalline Solids, 2010, 356, 848-851.	3.1	63
5	Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber. Journal of Lightwave Technology, 2017, 35, 430-436.	4.6	53
6	Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-/spl mu/m wavelength range. IEEE Journal of Quantum Electronics, 2004, 40, 1275-1282.	1.9	51
7	Multi-watts narrow-linewidth all fiber Yb-doped laser operating at 1179 nm. Optics Express, 2010, 18, 5920.	3.4	47
8	Record power, ultra-broadband supercontinuum source based on highly GeO_2 doped silica fiber. Optics Express, 2016, 24, 26667.	3.4	46
9	Wideband EDFA Based on Erbium Doped Crystalline Zirconia Yttria Alumino Silicate Fiber. Journal of Lightwave Technology, 2010, 28, 2919-2924.	4.6	43
10	Hollow core anti-resonant fiber with split cladding. Optics Express, 2016, 24, 7670.	3.4	41
11	Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening. Optics Communications, 2010, 283, 3423-3427.	2.1	39
12	Hollow-core air-gap anti-resonant fiber couplers. Optics Express, 2017, 25, 29296.	3.4	39
13	Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers. Optics Letters, 2010, 35, 2882.	3.3	38
14	Power stable 1.5–10.5  µm cascaded mid-infrared supercontinuum laser without thulium amplifier. Optics Letters, 2021, 46, 1129.	3.3	35
15	Ultra-short wavelength operation of thulium-doped fiber amplifiers and lasers. Optics Express, 2019, 27, 36699.	3.4	35
16	All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber. Optics Express, 2020, 28, 17570.	3.4	33
17	Excited state absorption measurement in the 900-1250 nm wavelength range for bismuth-doped silicate fibers. Optics Letters, 2009, 34, 530.	3.3	32
18	Coreless Fiberâ€Based Whisperingâ€Galleryâ€Mode Assisted Lasing from Colloidal Quantum Well Solids. Advanced Functional Materials, 2020, 30, 1907417.	14.9	31

#	Article	IF	CITATIONS
19	Optical Fiber Fabrication Using Novel Gas-Phase Deposition Technique. Journal of Lightwave Technology, 2011, 29, 912-915.	4.6	30
20	Short-wave IR ultrafast fiber laser systems: Current challenges and prospective applications. Journal of Applied Physics, 2020, 128, .	2.5	29
21	High absorption large-mode area step-index fiber for tandem-pumped high-brightness high-power lasers. Photonics Research, 2020, 8, 1599.	7.0	29
22	Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm. Optics Communications, 2005, 247, 153-162.	2.1	27
23	115  W fiber laser with an all solid-structure and a large-mode-area multicore fiber. Optics Letters, 2018, 43, 3369.	3.3	26
24	Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding. Laser Physics Letters, 2011, 8, 453-457.	1.4	25
25	Scaling power, bandwidth, and efficiency of mid-infrared supercontinuum source based on a GeO ₂ -doped silica fiber. Journal of the Optical Society of America B: Optical Physics, 2019, 36, A86.	2.1	23
26	Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 175, 108-119.	3.5	22
27	Function of second cladding layer in hollow core tube lattice fibers. Scientific Reports, 2017, 7, 1618.	3.3	22
28	Development of a glass optical fiber containing ZnO–Al2O3–SiO2 glass-ceramics doped with Co2+ and its optical absorption characteristics. Journal of Non-Crystalline Solids, 2003, 315, 180-186.	3.1	21
29	Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers. Applied Optics, 2010, 49, 1388.	2.1	21
30	Ultra-low NA step-index large mode area Yb-doped fiber with a germanium doped cladding for high power pulse amplification. Optics Letters, 2020, 45, 3828.	3.3	21
31	Incorporation of Yb3+ ions in multicomponent phase-separated fibre glass preforms. Optical Materials, 2012, 34, 660-664.	3.6	20
32	A Method to Process Hollow-Core Anti-Resonant Fibers into Fiber Filters. Fibers, 2018, 6, 89.	4.0	20
33	Anti-resonant hollow-core fiber fusion spliced to laser gain fiber for high-power beam delivery. Optics Letters, 2021, 46, 4374.	3.3	20
34	Yb\$_{2}\$O\$_{3}\$ Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers. Journal of Lightwave Technology, 2012, 30, 2062-2068.	4.6	19
35	Observation of incoherently coupled dark-bright vector solitons in single-mode fibers. Optics Express, 2019, 27, 18311.	3.4	19
36	Step-index high-absorption Yb-doped large-mode-area fiber with Ge-doped raised cladding. Optics Letters, 2018, 43, 5897.	3.3	19

#	Article	IF	CITATIONS
37	Measurement of photodarkening in Yb-doped aluminosilicate fibres at elevated temperature. Electronics Letters, 2010, 46, 233.	1.0	15
38	Optical properties of the optical fiber containing Co2+ doped ZnO–Al2O3–SiO2 glass-ceramics. Journal of Non-Crystalline Solids, 2002, 303, 291-295.	3.1	14
39	Influence of cooling on a bismuth-doped fiber laser and amplifier performance. Applied Optics, 2009, 48, G83.	2.1	14
40	Birefringent Bragg Grating in C-Shaped Optical Fiber as a Temperature-Insensitive Refractometer. Sensors, 2018, 18, 3285.	3.8	14
41	Temperature-Insensitive Mechanical Sensor Using Multi-Modal Behavior of Antiresonant Hollow-Core Fibers. Journal of Lightwave Technology, 2021, 39, 3998-4005.	4.6	14
42	Double-pass erbium-doped zirconia fiber amplifier for wide-band and flat-gain operations. Optics and Laser Technology, 2011, 43, 1279-1281.	4.6	13
43	Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber. Optics Express, 2018, 26, 23295.	3.4	12
44	Multimode Nested Antiresonant Hollow Core Fiber. Journal of Lightwave Technology, 2021, 39, 6592-6598.	4.6	12
45	W-type normal dispersion thulium-doped fiber-based high-energy all-fiber femtosecond laser at 1.7  µm. Optics Letters, 2021, 46, 3637.	3.3	12
46	Femtosecond Bragg grating inscription in an Yb-doped large-mode-area multicore fiber for high-power laser applications. Optics Letters, 2020, 45, 4563.	3.3	12
47	Reply to comment on "Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiationâ€: Optics Letters, 2008, 33, 1217.	3.3	11
48	Study of Multichannel Amplification in Erbium-Doped Zirconia-Yttria- Alumino-Silicate Fiber. Journal of Lightwave Technology, 2011, 29, 2109-2115.	4.6	11
49	Q-switched neodymium-doped Y_3Al_5O_12-based silica fiber laser. Optics Letters, 2012, 37, 2181.	3.3	11
50	Pump Wavelength Dependence of Photodarkening in Yb-Doped Fibers. Journal of Lightwave Technology, 2017, 35, 2535-2540.	4.6	11
51	Fiber design for high-power fiber lasers. , 2009, , .		10
52	Compact fiber laser at L-band region using Erbium-doped Zirconia fiber. Laser Physics, 2011, 21, 176-179.	1.2	10
53	Multiple hollow-core anti-resonant fiber as a supermodal fiber interferometer. Scientific Reports, 2019, 9, 9342.	3.3	10
54	Mode instability in ytterbium-doped non-circular fibers. Optics Express, 2017, 25, 13230.	3.4	9

#	Article	IF	CITATIONS
55	Large-mode-area multicore Yb-doped fiber for an efficient high power 976 nm laser. Optics Express, 2021, 29, 21992.	3.4	9
56	Nano-Engineered Yb ₂ O ₃ Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review. Science of Advanced Materials, 2012, 4, 292-321.	0.7	9
57	Regenerative Er-doped Fiber Amplifier System for High-repetition-rate Optical Pulses. Journal of the Optical Society of Korea, 2013, 17, 357-361.	0.6	9
58	Integration of an anti-resonant hollow-core fiber with a multimode Yb-doped fiber for high power near-diffraction-limited laser operation. Optics Express, 2022, 30, 7928.	3.4	9
59	Pump Power Depreciation by Photodarkening in Ytterbium-Doped Fibers and Amplifiers. IEEE Photonics Technology Letters, 2014, 26, 115-118.	2.5	8
60	Mode Selection in Large-Mode-Area Step-Index Multicore Fiber Laser and Amplifier. IEEE Photonics Technology Letters, 2020, 32, 722-725.	2.5	8
61	Optical anisotropy in single-walled carbon nanotubes. Optics Letters, 2005, 30, 3201.	3.3	7
62	Stress-Loss Correlation and Dispersion Control in Highly GeO ₂ -Doped Fibers. IEEE Photonics Technology Letters, 2016, 28, 1521-1524.	2.5	7
63	Hybrid daylight harvesting system using static ball lens concentrator and movable optical fiber. Solar Energy, 2021, 216, 121-132.	6.1	7
64	488 nm irradiation induced photodarkening study of Yb-doped aluminosilicate and phosphosilicate fibers. , 2008, , .		6
65	Rare-Earth Doped Optical Fiber Fabrication Using Novel Gas Phase Deposition Technique. , 2010, , .		6
66	Dispersion measurement of optical fibers by phase retrieval from spectral interferometry. Journal of Optics (United Kingdom), 2017, 19, 055611.	2.2	6
67	Investigation of Thermal Loads for Transverse Mode Instability in Ytterbium-Doped Large Mode Area Fibers. Journal of Lightwave Technology, 2020, 38, 4478-4489.	4.6	6
68	Reconfigurable multiwavelength fiber laser based on multimode interference in highly germanium-doped fiber. Applied Optics, 2020, 59, 1163.	1.8	6
69	3 % Thermal Load Measured in Tandem-pumped Ytterbium-doped Fiber Amplifier. , 2014, , .		6
70	All-solid antiresonant fiber design for high-efficiency three-level lasing in ytterbium-doped fiber lasers. Optics Letters, 2022, 47, 1045.	3.3	6
71	Tunable Laser in Ytterbium-Doped \${m Y}_{2}{m O}_{3}\$ Nanoparticle Optical Fibers. IEEE Photonics Technology Letters, 2012, 24, 679-681.	2.5	5
72	Multi-trench fiber with four gaps for improved bend performance. Applied Optics, 2015, 54, 8271.	2.1	5

#	Article	IF	CITATIONS
73	High Energy Ultrafast Laser at 2 μm Using Dispersion Engineered Thulium-Doped Fiber. IEEE Photonics Journal, 2019, 11, 1-12.	2.0	5
74	Ultra-short wavelength operation of a thulium doped fiber laser in the 1620-1660nm wavelength band. , 2018, , .		5
75	Spectral control of optical gain in a rare earth-doped optical fiber using novel triple layered structures. Optical Fiber Technology, 2006, 12, 297-304.	2.7	4
76	Mode area scalability in rectangular core fiber. , 2015, , .		4
77	Bendable large-mode-area fiber with a non-circular core. Applied Optics, 2018, 57, 6388.	1.8	4
78	Influence of pulse duration and repetition rate on mid-infrared cascaded supercontinuum. Optics Letters, 2020, 45, 5161.	3.3	4
79	Ytterbium doped nanostructured optical fibers for high power fiber lasers. , 2009, , .		3
80	High power, ultra-broadband supercontinuum source based on highly GeO ₂ doped silica fiber. Proceedings of SPIE, 2017, , .	0.8	3
81	Fabrication of 74 mol% GeO2-Doped Fibers and Mid-IR Supercontinuum Generation. , 2016, , .		3
82	Optical Orbital Angular Momentum Amplifier based on an Air-Core Erbium Doped Fiber. , 2016, , .		3
83	Fabrication of Low Loss Low-NA Highly Yb-doped Aluminophosphosilicate Fiber for High Power Fiber Lasers. , 2018, , .		3
84	Amplified spontaneous emission light source near 640 nm in an organic–inorganic hybrid device based on a dye-filled hollow optical fiber. Optics Communications, 2005, 247, 163-169.	2.1	2
85	W-type fiber design for application in U- and S-band amplifiers by controlling the LPO1 mode long wavelength cut-off. Optical Fiber Technology, 2005, 11, 332-345.	2.7	2
86	High power fibre lasers: Exploitation of unique properties. , 2009, , .		2
87	Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers. , 2009, , .		2
88	Microstructured Inline Optical Fiber Structure for Dispersion Control and Coherent Supercontinuum Generation. IEEE Photonics Journal, 2016, 8, 1-9.	2.0	2
89	Ultra-wideband Operation of a Tunable Thulium Fibre Laser offering Tunability from $1679\hat{a}\in$ 1992 nm. , 2017, , .		2
90	Large mode area inverse index fiber with a graded index profile for high power single mode operation. Optics Express, 2017, 25, 21935.	3.4	2

#	Article	IF	CITATIONS
91	Investigation of Core Compositions for Efficient 976 nm Lasing From Step Index Large-Mode-Area Fiber. IEEE Photonics Technology Letters, 2020, 32, 1457-1460.	2.5	2
92	Sensing applications of double hollow-core anti-resonant fiber based modal interferometer. , 2018, , .		2
93	Normal dispersion thulium fiber for ultrafast near-2 µm fiber laser. , 2018, , .		2
94	Suppression of Transverse Mode Instability in Ring-core Fiber. , 2020, , .		2
95	Yb:Al-doped depressed clad hollow optical fiber laser operating at 980nm. , 0, , .		1
96	Opportunities in high-power fiber lasers. , 2006, , .		1
97	High power single-frequency Yb doped fiber amplifiers. , 2006, , .		1
98	Ytterbium-Doped Low-NA P-Al-Silicate Large-Mode-Area Fiber for High Power Applications. , 2010, , .		1
99	Hollow core anti-resonant fibres with split cladding. Proceedings of SPIE, 2016, , .	0.8	1
100	Large-mode-area Multicore Fiber Amplifier at 1070 nm. , 2018, , .		1
101	Evolution from Periodic Intensity Modulations to Dissipative Vector Solitons in A Single-Mode Fiber Laser. Photonics, 2020, 7, 103.	2.0	1
102	Efficient 976 nm laser based on an all-solid and large-mode-area multicore Yb-doped fiber. , 2021, , .		1
103	High-energy Pulse Generation at 1.76 μm from All-fiber Laser Configuration using Normal Dispersion Thulium-doped Fiber. , 2020, , .		1
104	5.4 W cladding-pumped Nd:YAG silica fiber laser. , 2012, , .		1
105	Bismuth-doped fiber laser at 1.16 μm. , 2008, , .		1
106	115 W Large-mode-area Multi-core Fiber Laser with All Solid Structure. , 2018, , .		1
107	An All-solid Large-mode-area Multicore Fiber Laser with A Pinhole for Mode Selection. , 2018, , .		1
108	Toward high peak power ultrashort pulses using normal dispersion thulium fiber in all-fiber amplifier		1

and compressor., 2020,,.

#	Article	IF	CITATIONS
109	Enhanced modal interference in negative curvature fiber for sensing applications. , 2020, , .		1
110	Selective Excitation of Fundamental Mode in Fusion Spliced Antiresonant Hollow-Core Fiber. , 2021, , .		1
111	Depressed clad hollow optical fiber with fundamental LP 01 mode cut-off. , 2006, , .		Ο
112	Progress in active fibers. , 2007, , .		0
113	Progress in high-power single frequency master oscillator power amplifier. , 2008, , .		0
114	All Fiber Narrow Linewidth High Power Bismuth Doped Fiber Amplifier at 1179 nm. , 2009, , .		0
115	Influence of temperature on the post-irradiation temporal loss evolution in Yb-doped aluminosilicate fibers, photodarkened by 488 nm CW irradiation. , 2009, , .		Ο
116	Bismuth doped fiber laser performance on effective fiber cooling. , 2009, , .		0
117	Thermal resilience of polymer-coated double-clad fiber. , 2009, , .		0
118	Modification of Spectroscopic Properties of Bismuth Doped Silica Fiber by Post-fabrication Process and Different Fabrication Methods. , 2010, , .		0
119	Novel fibre technology for high-power lasers. , 2010, , .		0
120	Polarization-maintaining ytterbium-doped fibre with an aluminosilicate inner-cladding fabricated using in-situ doping technique. , 2011, , .		0
121	Characteristics of suspended-core fiber interferometer: Modal analysis. , 2012, , .		0
122	Nano-engineered glass based optical fiber for fiber laser. , 2012, , .		0
123	Measuring photodarkening from Ytterbium-doped fiber amplifier at 1064 nm wavelength emission. , 2012, , .		0
124	Minimize quantum-defect heating in thulium-doped silica fiber amplifiers by tandem-pumping. , 2012, , .		0
125	Pump power reduction by photodarkening in Yb-doped fibres. , 2013, , .		0
126	Fiber-based technology for efficient three photon generation. , 2014, , .		0

8

#	Article	IF	CITATIONS
127	Novel Design of Large-Mode-Area Rod-Type Fibers with Negative Curvature Trenches at 1 ŵm. , 2014, , .		Ο
128	1-μm Periodical grating structure on stainless steel designed by high-power nanosecond pulsed fiber lasers. , 2015, , .		0
129	Stress induced bend compensation in a large mode area fiber. , 2015, , .		0
130	Fibre fabrications for high power laser fibres and high nonlinearity fibres. , 2015, , .		0
131	Mode instability in a Yb-doped stretched core fiber. , 2017, , .		0
132	Asymmetric large mode area fibres. , 2017, , .		0
133	Multiple-Hollow-Core Anti-resonant Fiber. , 2018, , .		Ο
134	Editorial: HPLSE special issue on fibres for high-power lasers. High Power Laser Science and Engineering, 2018, 6, .	4.6	0
135	Ultra-Short Wavelength Operation of Thulium-Doped Fibre Amplifier in the 1628–1655nm Waveband. , 2018, , .		0
136	Large-mode-area Fiber with Non-circular Cores. , 2018, , .		0
137	Tunable Mode-Locked Fiber Laser in 1750–1870nm by Bending Normal Dispersion Thulium-Doped Fiber as a Distribution Filter. , 2019, , .		Ο
138	Photo Darkening Suppression in Highly Yb-Doped Aluminophosphosilicate Fiber by Addition of Cerium. , 2019, , .		0
139	All-fiber High-energy 174 fs Laser at 1.78 μm using parabolic W-type Normal Dispersion Thulium-doped Fiber. , 2021, , .		0
140	Emission Cross-Section Synthesis in Rare Earth Doped Optical Fiber. , 2005, , .		0
141	Fiber MOPAs with high control and high power. , 2008, , .		0
142	Ytterbium Doped Nano-crystalline Optical Fiber for Reduced Photodarkening. , 2010, , .		0
143	Specialty Doped Fibers in High Power Lasers. , 2013, , .		0
144	Highly coherent supercontinuum generation in an inline silica optical fiber structure. , 2016, , .		0

#	Article	IF	CITATIONS
145	Double layer hollow core anti-resonant fiber for small core and low loss characteristics. , 2017, , .		Ο
146	Carbon Nanoparticles as an Optical Modulator for Passively Q-switched Fiber Laser. , 2018, , .		0
147	Bendable large-mode-area fiber with a non-circular core: publisher's note. Applied Optics, 2018, 57, 8518.	1.8	0
148	16 W Large-mode-area Multi-core Q-switched Fiber Laser. , 2019, , .		0
149	High Absorption Low NA Step Index Large-Mode-Area Fiber for High Power Ultrafast Lasers. , 2019, , .		0
150	Ultra flat mid-infrared supercontinuum source based on concatenation of Thulium and Germania doped silica fibers. , 2019, , .		0
151	All-Fiber 2 μm Amplifier Using a Normal Dispersion Thulium Fiber. , 2019, , .		0
152	Scaling power and bandwidth of mid-infrared supercontinuum source based on a GeO2 doped silica fiber. , 2019, , .		0
153	Yb-doped Large Mode Area Multicore Fiber Laser with a Fs-inscribed Fiber Bragg Grating. , 2020, , .		0
154	Simultaneous Strain and Force Sensing in an Antiresonant Fiber Featuring Enhanced Modal Interference. , 2020, , .		0
155	Photodarkening Suppressed Low Loss Yb:Al:P Doped Fiber by All Solution Doping Technique. , 2020, , .		0
156	Long Wavelength Mid-Infrared Supercontinuum Source. , 2020, , .		0
157	All-Fiber CPA Toward High Peak Power fs Pulses at 1875nm Using Normal Dispersion Tm Fiber. , 2020, , .		0
158	Low NA Ge-Clad Step-Index Yb-Doped Fiber for High Power Picosecond Laser Pulses. , 2020, , .		0
159	All-fiber Short-wavelength Mode-locked Fiber Laser and Amplifier Using Normal Dispersion Thulium-doped Fiber. , 2020, , .		0
160	1725nm all-fiber SWIR CW laser using W-type Tm:Ge doped fiber. , 2021, , .		0

1725nm all-fiber SWIR CW laser using W-type Tm:Ge doped fiber. , 2021, , . 160