Bart N Lambrecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9277099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The STE20 kinase TAOK3 controls the development of house dust mite–induced asthma in mice. Journal of Allergy and Clinical Immunology, 2022, 149, 1413-1427.e2.	2.9	7
2	Future prospects of translational and clinical eosinophil research. , 2022, , 253-262.		1
3	The state of complement in COVID-19. Nature Reviews Immunology, 2022, 22, 77-84.	22.7	159
4	TIM3+ <i> TRBV11-2</i> T cells and IFNÎ ³ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. Journal of Experimental Medicine, 2022, 219, .	8.5	57
5	Granulocyte-colony stimulating factor: Missing link for stratification of type 2–high and type 2–low chronic rhinosinusitis patients. Journal of Allergy and Clinical Immunology, 2022, 149, 1655-1665.e5.	2.9	7
6	Prospective longitudinal evaluation of hospitalised COVID-19 survivors 3 and 12 months after discharge. ERJ Open Research, 2022, 8, 00004-2022.	2.6	58
7	Emerging Paradigms in Type 2 Immunity. Annual Review of Immunology, 2022, 40, 443-467.	21.8	16
8	Inflammasomes and IL-1 family cytokines in SARS-CoV-2 infection: from prognostic marker to therapeutic agent. Cytokine, 2022, 157, 155934.	3.2	19
9	Transient Lymph Node Immune Activation by Hydrolysable Polycarbonate Nanogels. Advanced Functional Materials, 2022, 32, .	14.9	11
10	Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, e1-18.	2.9	3
11	Surgery in Nasal Polyp Patients: Outcome After a Minimum Observation of 10 Years. American Journal of Rhinology and Allergy, 2021, 35, 449-457.	2.0	30
12	Coronavirus disease 2019 in patients with inborn errors of immunity: An international study. Journal of Allergy and Clinical Immunology, 2021, 147, 520-531.	2.9	278
13	Missing heritability in Bloom syndrome: First report of a deep intronic variant leading to pseudoâ€exon activation in the <scp><i>BLM</i></scp> gene. Clinical Genetics, 2021, 99, 292-297.	2.0	3
14	Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis. Immunity, 2021, 54, 68-83.e6.	14.3	51
15	Lipid-Polyglutamate Nanoparticle Vaccine Platform. ACS Applied Materials & Interfaces, 2021, 13, 6011-6022.	8.0	20
16	Conceptions of the pathophysiology of happy hypoxemia in COVID-19. Respiratory Research, 2021, 22, 12.	3.6	23
17	Local immune response to food antigens drives meal-induced abdominal pain. Nature, 2021, 590, 151-156.	27.8	153
18	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	8.5	6

#	Article	IF	CITATIONS
19	Sterilizing Immunity against SARSâ€CoVâ€2 Infection in Mice by a Singleâ€Shot and Lipid Amphiphile Imidazoquinoline TLR7/8 Agonistâ€Adjuvanted Recombinant Spike Protein Vaccine**. Angewandte Chemie - International Edition, 2021, 60, 9467-9473.	13.8	45
20	Sterilizing Immunity against SARSâ€CoVâ€2 Infection in Mice by a Singleâ€6hot and Lipid Amphiphile Imidazoquinoline TLR7/8 Agonistâ€Adjuvanted Recombinant Spike Protein Vaccine**. Angewandte Chemie, 2021, 133, 9553-9559.	2.0	4
21	The basic immunology of asthma. Cell, 2021, 184, 1469-1485.	28.9	374
22	Airway epithelial cell necroptosis contributes to asthma exacerbation in a mouse model of house dust mite-induced allergic inflammation. Mucosal Immunology, 2021, 14, 1160-1171.	6.0	25
23	RNA viruses in the house dust mite Dermatophagoides pteronyssinus , detection in environmental samples and in commercial allergen extracts used for in vivo diagnosis. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3743-3754.	5.7	1
24	Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators. Journal of the American Chemical Society, 2021, 143, 9872-9883.	13.7	36
25	The pharmacology of the prostaglandin D2 receptor 2 (DP2) receptor antagonist, fevipiprant. Pulmonary Pharmacology and Therapeutics, 2021, 68, 102030.	2.6	5
26	Lipid Nature and Alkyl Length Influence Lymph Node Accumulation of Lipidâ€Polyethylene Glycol Amphiphiles. Advanced Therapeutics, 2021, 4, 2100079.	3.2	6
27	ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Reports, 2021, 36, 109500.	6.4	65
28	Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19. JAMA - Journal of the American Medical Association, 2021, 326, 499.	7.4	498
29	IRE1β does not affect mucus secretion during allergic asthma development in a house dust mite murine model. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3546-3549.	5.7	3
30	Charcot–Leyden crystals and other protein crystals driving type 2 immunity and allergy. Current Opinion in Immunology, 2021, 72, 72-78.	5.5	23
31	Pathophysiological and Clinical Aspects of Chronic Rhinosinusitis: Current Concepts. Frontiers in Allergy, 2021, 2, 741788.	2.8	6
32	Effect of anti-interleukin drugs in patients with COVID-19 and signs of cytokine release syndrome (COV-AID): a factorial, randomised, controlled trial. Lancet Respiratory Medicine,the, 2021, 9, 1427-1438.	10.7	86
33	ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. Cell Reports, 2021, 37, 110051.	6.4	16
34	Short-term preoperative protein restriction attenuates vein graft disease via induction of cystathionine Î ³ -Iyase. Cardiovascular Research, 2020, 116, 416-428.	3.8	30
35	Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. Journal of Allergy and Clinical Immunology, 2020, 145, 427-430.e4.	2.9	55
36	GATA2 deficiency and haematopoietic stem cell transplantation: challenges for the clinical practitioner. British Journal of Haematology, 2020, 188, 768-773.	2.5	27

#	Article	IF	CITATIONS
37	Clarifying the translational potential of B-109. Nature Chemical Biology, 2020, 16, 1152-1152.	8.0	2
38	TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31331-31342.	7.1	17
39	Zilucoplan in patients with acute hypoxic respiratory failure due to COVID-19 (ZILU-COV): A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21, 934.	1.6	14
40	The pathophysiology of â€~happy' hypoxemia in COVID-19. Respiratory Research, 2020, 21, 198.	3.6	354
41	Case Report: Convalescent Plasma, a Targeted Therapy for Patients with CVID and Severe COVID-19. Frontiers in Immunology, 2020, 11, 596761.	4.8	45
42	Adult chronic rhinosinusitis. Nature Reviews Disease Primers, 2020, 6, 86.	30.5	146
43	Dominant-negative mutations in human <i>IL6ST</i> underlie hyper-IgE syndrome. Journal of Experimental Medicine, 2020, 217, .	8.5	64
44	TAOK3 is a MAP3K contributing to osteoblast differentiation and skeletal mineralization. Biochemical and Biophysical Research Communications, 2020, 531, 497-502.	2.1	15
45	Wnt and Hippo pathways in regulatory T cells: a NOTCH above in asthma. Nature Immunology, 2020, 21, 1313-1314.	14.5	9
46	The global response to the COVID-19 pandemic: how have immunology societies contributed?. Nature Reviews Immunology, 2020, 20, 594-602.	22.7	17
47	A randomized, multicentre, open-label phase II proof-of-concept trial investigating the clinical efficacy and safety of the addition of convalescent plasma to the standard of care in patients hospitalized with COVID-19: the Donated Antibodies Working against nCoV (DAWn-Plasma) trial. Trials, 2020, 21, 981.	1.6	17
48	Tnfaip3 expression in pulmonary conventional type 1 Langerinâ€expressing dendritic cells regulates T helper 2â€mediated airway inflammation in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2587-2598.	5.7	10
49	Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity, 2020, 52, 1039-1056.e9.	14.3	237
50	Potent and Prolonged Innate Immune Activation by Enzyme-Responsive Imidazoquinoline TLR7/8 Agonist Prodrug Vesicles. Journal of the American Chemical Society, 2020, 142, 12133-12139.	13.7	52
51	Zeb2 drives invasive and microbiota-dependent colon carcinoma. Nature Cancer, 2020, 1, 620-634.	13.2	29
52	Treatment of severely ill COVID-19 patients with anti-interleukin drugs (COV-AID): A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21, 468.	1.6	57
53	An antiâ€siglecâ€8 antibody depletes sputum eosinophils from asthmatic subjects and inhibits lung mast cells. Clinical and Experimental Allergy, 2020, 50, 904-914.	2.9	24
54	Sargramostim to treat patients with acute hypoxic respiratory failure due to COVID-19 (SARPAC): A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21, 491.	1.6	24

#	Article	IF	CITATIONS
55	Rbm7 in Structural Cells: A NEAT Way to Control Fibrosis. Immunity, 2020, 52, 429-431.	14.3	3
56	Human Lung Conventional Dendritic Cells Orchestrate Lymphoid Neogenesis during Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 535-548.	5.6	34
57	CCR2- and Flt3-Dependent Inflammatory Conventional Type 2 Dendritic Cells Are Necessary for the Induction of Adaptive Immunity by the Human Vaccine Adjuvant System AS01. Frontiers in Immunology, 2020, 11, 606805.	4.8	20
58	Potent Lymphatic Translocation and Spatial Control Over Innate Immune Activation by Polymer–Lipid Amphiphile Conjugates of Smallâ€Molecule TLR7/8 Agonists. Angewandte Chemie - International Edition, 2019, 58, 15390-15395.	13.8	43
59	Amphiphile Polymerâ€Lipidkonjugate zur potenten lymphatischen Anreicherung von TLR7/8â€Agonisten ermöglichen eine örtlich begrenzte Aktivierung des angeborenen Immunsystems. Angewandte Chemie, 2019, 131, 15535-15541.	2.0	5
60	The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF. Journal of Experimental Medicine, 2019, 216, 2010-2023.	8.5	15
61	Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science, 2019, 366, 881-886.	12.6	179
62	The ORMDL3 asthma susceptibility gene regulates systemic ceramide levels without altering key asthma features in mice. Journal of Allergy and Clinical Immunology, 2019, 144, 1648-1659.e9.	2.9	35
63	Cell surface clicking of antibody-recruiting polymers to metabolically azide-labeled cancer cells. Chemical Communications, 2019, 55, 10952-10955.	4.1	24
64	How a farming environment protects from atopy. Current Opinion in Immunology, 2019, 60, 163-169.	5.5	18
65	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	14.3	384
66	Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science, 2019, 364, .	12.6	197
67	IL-17–high asthma with features of a psoriasis immunophenotype. Journal of Allergy and Clinical Immunology, 2019, 144, 1198-1213.	2.9	80
68	The Cytokines of Asthma. Immunity, 2019, 50, 975-991.	14.3	622
69	Prophylactic allergen immunotherapy with Der p 2 prevents murine asthma by regulating lung GM-CSF. Journal of Allergy and Clinical Immunology, 2019, 143, 2307-2311.e5.	2.9	8
70	A Synthetic, Transiently Thermoresponsive Homopolymer with UCST Behaviour within a Physiologically Relevant Window. Angewandte Chemie - International Edition, 2019, 58, 7866-7872.	13.8	38
71	IL-33trap is a novel IL-33–neutralizing biologic that inhibits allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2019, 144, 204-215.	2.9	45
72	Professional and â€~Amateur' Antigen-Presenting Cells In Type 2 Immunity. Trends in Immunology, 2019, 40, 22-34.	6.8	86

#	Article	IF	CITATIONS
73	FcÎμ RI expression and IgE binding by dendritic cells and basophils in allergic rhinitis and upon allergen immunotherapy. Clinical and Experimental Allergy, 2018, 48, 970-980.	2.9	25
74	Heart macrophages and dendritic cells in sickness and in health: A tale of a complicated marriage. Cellular Immunology, 2018, 330, 105-113.	3.0	27
75	Role of NKp46 ⁺ natural killer cells in house dust miteâ€driven asthma. EMBO Molecular Medicine, 2018, 10, .	6.9	16
76	Co-Activation of Glucocorticoid Receptor and Peroxisome Proliferator–Activated Receptor-γ in Murine Skin Prevents Worsening of Atopic March. Journal of Investigative Dermatology, 2018, 138, 1360-1370.	0.7	16
77	Response to Orlova et al. "Science not art: statistically sound methods for identifying subsets in multi-dimensional flow and mass cytometry data sets― Nature Reviews Immunology, 2018, 18, 78-78.	22.7	9
78	Osteopontin Promotes Protective Antigenic Tolerance against Experimental Allergic Airway Disease. Journal of Immunology, 2018, 200, 1270-1282.	0.8	9
79	Isolation of Conventional Murine Lung Dendritic Cell Subsets. Current Protocols in Immunology, 2018, 120, 3.7B.1-3.7B.16.	3.6	4
80	Potent anti-viral vaccine adjuvant based on pH-degradable nanogels with covalently linked small molecule imidazoquinoline TLR7/8 agonist. Biomaterials, 2018, 178, 643-651.	11.4	49
81	Type III collagen affects dermal and vascular collagen fibrillogenesis and tissue integrity in a mutant Col3a1 transgenic mouse model. Matrix Biology, 2018, 70, 72-83.	3.6	48
82	Personalized medicine with biologics for severe type 2 asthma: current status and future prospects. MAbs, 2018, 10, 34-45.	5.2	63
83	TNF-α–induced protein 3 levels in lung dendritic cells instruct T H 2 or T H 17Âcell differentiation in eosinophilic or neutrophilic asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1620-1633.e12.	2.9	43
84	FcRn is mother's milk to allergen tolerance. Journal of Experimental Medicine, 2018, 215, 1-3.	8.5	14
85	A CARD9 Founder Mutation Disrupts NF-κB Signaling by Inhibiting BCL10 and MALT1 Recruitment and Signalosome Formation. Frontiers in Immunology, 2018, 9, 2366.	4.8	46
86	Stabilization of cytokine mRNAs in iNKT cells requires the serine-threonineÂkinase IRE1alpha. Nature Communications, 2018, 9, 5340.	12.8	14
87	Myocarditis Elicits Dendritic Cell and Monocyte Infiltration in the Heart and Self-Antigen Presentation by Conventional Type 2 Dendritic Cells. Frontiers in Immunology, 2018, 9, 2714.	4.8	28
88	Eicosanoid Control Over Antigen Presenting Cells in Asthma. Frontiers in Immunology, 2018, 9, 2006.	4.8	17
89	Nanoparticleâ€Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses. Advanced Materials, 2018, 30, e1803397.	21.0	120
90	Lymph-Node-Targeted Immune Activation by Engineered Block Copolymer Amphiphiles–TLR7/8 Agonist Conjugates. Journal of the American Chemical Society, 2018, 140, 14300-14307.	13.7	50

#	Article	IF	CITATIONS
91	The emerging role of ADAM metalloproteinases in immunity. Nature Reviews Immunology, 2018, 18, 745-758.	22.7	166
92	Characterization of a lung epithelium specific E-cadherin knock-out model: Implications for obstructive lung pathology. Scientific Reports, 2018, 8, 13275.	3.3	42
93	KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nature Plants, 2018, 4, 365-375.	9.3	88
94	Antigen presentation unfolded: identifying convergence points between the UPR and antigen presentation pathways. Current Opinion in Immunology, 2018, 52, 100-107.	5.5	31
95	The Generation and Use of Allergen-Specific TCR Transgenic Animals. Methods in Molecular Biology, 2018, 1799, 183-210.	0.9	2
96	Hyaluronic Acid Conjugates of TLR7/8 Agonists for Targeted Delivery to Secondary Lymphoid Tissue. Bioconjugate Chemistry, 2018, 29, 2741-2754.	3.6	22
97	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	14.3	172
98	FRET Monitoring of Intracellular Ketal Hydrolysis in Synthetic Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 10760-10764.	13.8	43
99	A bispecific antibody strategy to target multiple type 2 cytokines in asthma. Journal of Allergy and Clinical Immunology, 2018, 142, 1185-1193.e4.	2.9	32
100	The hygiene hypothesis: immunological mechanisms of airway tolerance. Current Opinion in Immunology, 2018, 54, 102-108.	5.5	44
101	Försterâ€Resonanzenergietransferâ€basierter Nachweis intrazelluläer Ketalâ€Hydrolyse in synthetisch vernetzten Nanopartikeln. Angewandte Chemie, 2018, 130, 10920-10925.	2.0	2
102	Isolated <i>Schistosoma mansoni</i> eggs prevent allergic airway inflammation. Parasite Immunology, 2018, 40, e12579.	1.5	22
103	A pathophysiological role of PDE3 in allergic airway inflammation. JCI Insight, 2018, 3, .	5.0	33
104	Murine Models of Allergic Asthma. Methods in Molecular Biology, 2017, 1559, 121-136.	0.9	61
105	Transitional B cells commit to marginal zone B cell fate by Taok3-mediated surface expression of ADAM10. Nature Immunology, 2017, 18, 313-320.	14.5	71
106	Reliable mite-specific IgE testing in nasal secretions by means of allergen microarray. Journal of Allergy and Clinical Immunology, 2017, 140, 301-303.e8.	2.9	21
107	The immunophenotypic fingerprint of patients with primary antibody deficiencies is partially present in their asymptomatic first-degree relatives. Haematologica, 2017, 102, 192-202.	3.5	15
108	Mechanisms of the Development of Allergy (MeDALL): Introducing novel concepts in allergy phenotypes. Journal of Allergy and Clinical Immunology, 2017, 139, 388-399.	2.9	145

#	Article	IF	CITATIONS
109	Epicutaneous sensitization to house dust mite allergen requires interferon regulatory factor 4–dependent dermal dendritic cells. Journal of Allergy and Clinical Immunology, 2017, 140, 1364-1377.e2.	2.9	55
110	Myeloid Cells in Asthma. Microbiology Spectrum, 2017, 5, .	3.0	12
111	Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunology, 2017, 10, 831-844.	6.0	155
112	Probioticsâ€impregnated bedding covers for house dust mite allergic rhinitis: A pilot randomized clinical trial. Clinical and Experimental Allergy, 2017, 47, 1092-1096.	2.9	10
113	Regulated IRE1-dependent mRNA decay sets the threshold for dendritic cell survival. Nature Cell Biology, 2017, 19, 698-710.	10.3	93
114	Epitope mapping and kinetics of CD4 T cell immunity to pneumonia virus of mice in the C57BL/6 strain. Scientific Reports, 2017, 7, 3472.	3.3	2
115	Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nature Communications, 2017, 8, 14937.	12.8	115
116	Myocardial Infarction Primes Autoreactive T Cells through Activation of Dendritic Cells. Cell Reports, 2017, 18, 3005-3017.	6.4	104
117	PPAR-Î ³ promotes type 2 immune responses in allergy and nematode infection. Science Immunology, 2017, 2, .	11.9	74
118	Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Archiv European Journal of Physiology, 2017, 469, 561-572.	2.8	60
119	Bacteria isolated from lung modulate asthma susceptibility in mice. ISME Journal, 2017, 11, 1061-1074.	9.8	74
120	Haematopoietic prolyl hydroxylaseâ€1 deficiency promotes M2 macrophage polarization and is both necessary and sufficient to protect against experimental colitis. Journal of Pathology, 2017, 241, 547-558.	4.5	32
121	A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nature Immunology, 2017, 18, 1310-1320.	14.5	164
122	The immunology of the allergy epidemic and the hygiene hypothesis. Nature Immunology, 2017, 18, 1076-1083.	14.5	282
123	Mitochondrial Priming by CD28. Cell, 2017, 171, 385-397.e11.	28.9	212
124	Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNÎ ³ response promoting vaccine immunogenicity. Npj Vaccines, 2017, 2, 25.	6.0	171
125	Opposing regulation and roles for PHD3 in lung dendritic cells and alveolar macrophages. Journal of Leukocyte Biology, 2017, 102, 1115-1126.	3.3	7
126	The Unfolded Protein Response in the Immune Cell Development: Putting the Caretaker in the Driving Seat. Current Topics in Microbiology and Immunology, 2017, 414, 45-72.	1.1	3

#	Article	IF	CITATIONS
127	IL-21 Is Increased in Nasal Polyposis and after Stimulation with <i>Staphylococcus aureus</i> Enterotoxin B. International Archives of Allergy and Immunology, 2017, 174, 161-169.	2.1	20
128	TGF-β Gives an Air of Exclusivity to Alveolar Macrophages. Immunity, 2017, 47, 807-809.	14.3	6
129	Early-onset primary antibody deficiency resembling common variable immunodeficiency challenges the diagnosis of Wiedeman-Steiner and Roifman syndromes. Scientific Reports, 2017, 7, 3702.	3.3	30
130	Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunological Reviews, 2017, 278, 131-144.	6.0	57
131	House dust mite–driven asthma and allergen-specific T cells depend on B cells when the amount of inhaled allergen is limiting. Journal of Allergy and Clinical Immunology, 2017, 140, 76-88.e7.	2.9	55
132	Effects of domestic chemical stressors on expression of allergen genes in the European house dust mite. Medical and Veterinary Entomology, 2017, 31, 97-101.	1.5	5
133	The transcriptome of lung tumor-infiltrating dendritic cells reveals a tumor-supporting phenotype and a microRNA signature with negative impact on clinical outcome. Oncolmmunology, 2017, 6, e1253655.	4.6	50
134	U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. Journal of Allergy and Clinical Immunology, 2017, 139, 1797-1807.	2.9	236
135	Myeloid Cells in Asthma. , 2017, , 739-757.		0
136	Computational analysis of multimorbidity between asthma, eczema and rhinitis. PLoS ONE, 2017, 12, e0179125.	2.5	33
137	Early IL-1 Signaling Promotes iBALT Induction after Influenza Virus Infection. Frontiers in Immunology, 2016, 7, 312.	4.8	34
138	A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathogens, 2016, 12, e1005410.	4.7	50
139	pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8098-8103.	7.1	164
140	Mouse Models ofÂAsthma. Current Protocols in Mouse Biology, 2016, 6, 169-184.	1.2	68
141	Macrophage precursors PLASTed INto alveolar space. Blood, 2016, 128, 2750-2752.	1.4	1
142	Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung. Immunity, 2016, 45, 1285-1298.	14.3	271
143	Genes associated with common variable immunodeficiency: one diagnosis to rule them all?. Journal of Medical Genetics, 2016, 53, 575-590.	3.2	301
144	ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle. Clinical and Translational Allergy, 2016, 6, 47.	3.2	121

#	Article	IF	CITATIONS
145	IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis. Immunity, 2016, 44, 860-874.	14.3	118
146	The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. Journal of Experimental Medicine, 2016, 213, 897-911.	8.5	125
147	MACVIA clinical decision algorithm in adolescents and adults with allergic rhinitis. Journal of Allergy and Clinical Immunology, 2016, 138, 367-374.e2.	2.9	128
148	A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 16-21.	1.5	65
149	FloReMi: Flow density survival regression using minimal feature redundancy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 22-29.	1.5	47
150	Paving the way of systems biology and precision medicine in allergic diseases: the Me <scp>DALL</scp> success story. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1513-1525.	5.7	77
151	NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. Journal of Experimental Medicine, 2016, 213, 1973-1981.	8.5	31
152	Cholesterol-sensing liver X receptors stimulate Th2-driven allergic eosinophilic asthma in mice. Immunity, Inflammation and Disease, 2016, 4, 350-361.	2.7	19
153	IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity, 2016, 45, 626-640.	14.3	273
154	ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase. FASEB Journal, 2016, 30, 4289-4300.	0.5	27
155	Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity, 2016, 45, 669-684.	14.3	683
156	Conventional Dendritic Cells: Identification, Subsets, Development, andÂFunctions. , 2016, , 374-383.		0
157	GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid. Journal of Immunology, 2016, 197, 4312-4324.	0.8	12
158	Dual anti-idiotypic purification of a novel, native-format biparatopic anti-MET antibody with improved in vitro and in vivo efficacy. Scientific Reports, 2016, 6, 31621.	3.3	16
159	Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nature Reviews Immunology, 2016, 16, 449-462.	22.7	423
160	β-Glucan exacerbates allergic airway responses to house dust mite allergen. Respiratory Research, 2016, 17, 35.	3.6	21
161	Dendritic Cells and Type 2 Inflammation. , 2016, , 33-51.		0
162	A New aDENNDum to Genetics of Childhood Asthma. Cell, 2016, 164, 11-13.	28.9	4

#	Article	IF	CITATIONS
163	Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity, 2016, 44, 755-768.	14.3	478
164	Chronic and Invasive Fungal Infections in a Family with CARD9 Deficiency. Journal of Clinical Immunology, 2016, 36, 204-209.	3.8	98
165	Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 2016, 7, 10321.	12.8	604
166	A Generic Polymer–Protein Ligation Strategy for Vaccine Delivery. Biomacromolecules, 2016, 17, 874-881.	5.4	11
167	Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures. Experimental Neurology, 2016, 277, 244-251.	4.1	14
168	GM-CSF treatment prevents respiratory syncytial virus–induced pulmonary exacerbation responses in postallergic mice by stimulating alveolar macrophage maturation. Journal of Allergy and Clinical Immunology, 2016, 137, 700-709.e9.	2.9	17
169	Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient Intracellular Vaccine Protein Delivery. ACS Applied Materials & Interfaces, 2016, 8, 1147-1155.	8.0	99
170	Double-negative T resident memory cells of the lung react to influenza virus infection via CD11chi dendritic cells. Mucosal Immunology, 2016, 9, 999-1014.	6.0	30
171	Does Circulating IL-17 Identify a Subset of Patients With Idiopathic Pulmonary Arterial Hypertension?: Response. Chest, 2015, 148, e132-e133.	0.8	Ο
172	MACVIA-ARIA Sentinel NetworK for allergic rhinitis (MASK-rhinitis): the new generation guideline implementation. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1372-1392.	5.7	160
173	Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respiratory Research, 2015, 16, 108.	3.6	45
174	Microbial Ligand Costimulation Drives Neutrophilic Steroid-Refractory Asthma. PLoS ONE, 2015, 10, e0134219.	2.5	34
175	T-Helper 17 Cell Polarization in Pulmonary Arterial Hypertension. Chest, 2015, 147, 1610-1620.	0.8	72
176	Mucosal Dendritic Cells. , 2015, , 489-541.		4
177	The Mucosal Immune Response to Respiratory Viruses. , 2015, , 1805-1815.		1
178	Mucosal Immunity in the Oral Cavity, Upper Respiratory Tract, and Adjacent Areas. , 2015, , 1869-1871.		0
179	Are allergic multimorbidities and IgE polysensitization associated with the persistence or reâ€occurrence of foetal type 2 signalling? The <scp>M</scp> e <scp>DALL</scp> hypothesis. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1062-1078.	5.7	88
180	Imaging regulatory T cell dynamics and CTLA4-mediated suppression of T cell priming. Nature Communications, 2015, 6, 6219.	12.8	107

#	Article	IF	CITATIONS
181	FlowSOM: Using selfâ€organizing maps for visualization and interpretation of cytometry data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 636-645.	1.5	1,337
182	Modulation of the unfolded protein response impedes tumor cell adaptation to proteotoxic stress: a PERK for hepatocellular carcinoma therapy. Hepatology International, 2015, 9, 93-104.	4.2	58
183	In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis. Haematologica, 2015, 100, 157-166.	3.5	40
184	Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity, 2015, 43, 29-40.	14.3	634
185	Neutralizing TNFα restores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. Mucosal Immunology, 2015, 8, 1212-1225.	6.0	72
186	Phenotyping asthma, rhinitis and eczema in <scp>M</scp> e <scp>DALL</scp> populationâ€based birth cohorts: an allergic comorbidity cluster. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 973-984.	5.7	79
187	Raised immunoglobulin A and circulating T follicular helper cells are linked to the development of food allergy in paediatric liver transplant patients. Clinical and Experimental Allergy, 2015, 45, 1060-1070.	2.9	18
188	Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. Journal of Experimental Medicine, 2015, 212, 2015-2025.	8.5	151
189	Role of B Cell–Activating Factor in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 706-718.	5.6	87
190	Calcineurin inhibitors dampen humoral immunity by acting directly on naive B cells. Clinical and Experimental Immunology, 2015, 180, 542-550.	2.6	51
191	The potential of radiotherapy to enhance the efficacy of renal cell carcinoma therapy. Oncolmmunology, 2015, 4, e1042198.	4.6	36
192	SnapShot: Integrated Type 2 Immune Responses. Immunity, 2015, 43, 408-408.e1.	14.3	7
193	Interleukin-21-Producing CD4+ T Cells Promote Type 2 Immunity to House Dust Mites. Immunity, 2015, 43, 318-330.	14.3	132
194	Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science, 2015, 349, 1106-1110.	12.6	483
195	The immunology of asthma. Nature Immunology, 2015, 16, 45-56.	14.5	1,314
196	CCR2+CD103â^' intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunology, 2015, 8, 327-339.	6.0	140
197	Isolation of Splenic Dendritic Cells Using Fluorescence-activated Cell Sorting. Bio-protocol, 2015, 5, .	0.4	5
198	Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. Journal of Cell Biology, 2015, 211, 2113OIA260.	5.2	0

#	Article	IF	CITATIONS
199	A20-Deficient Mast Cells Exacerbate Inflammatory Responses In Vivo. PLoS Biology, 2014, 12, e1001762.	5.6	62
200	Dendritic Cell and Epithelial Cell Interactions at the Origin of Murine Asthma. Annals of the American Thoracic Society, 2014, 11, S236-S243.	3.2	37
201	Therapeutic effects of artesunate in hepatocellular carcinoma. European Journal of Gastroenterology and Hepatology, 2014, 26, 861-870.	1.6	39
202	Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry. Journal of Experimental Medicine, 2014, 211, 1019-1025.	8.5	45
203	Monocytes find a new place to dwell in the niche of heartbreak hotel. Journal of Experimental Medicine, 2014, 211, 2136-2136.	8.5	12
204	Ontogeny of Myeloid Cells. Frontiers in Immunology, 2014, 5, 423.	4.8	129
205	The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells. Nature Immunology, 2014, 15, 248-257.	14.5	223
206	Innate Immune Cells to the Help. Immunity, 2014, 40, 313-314.	14.3	4
207	Nanoporous Hydrogen Bonded Polymeric Microparticles: Facile and Economic Production of Cross Presentation Promoting Vaccine Carriers. Advanced Functional Materials, 2014, 24, 4634-4644.	14.9	41
208	Lung tumours reprogram pulmonary dendritic cell immunogenicity at the microRNA level. International Journal of Cancer, 2014, 135, 2868-2877.	5.1	27
209	The function of FcÎ ³ receptors in dendritic cells and macrophages. Nature Reviews Immunology, 2014, 14, 94-108.	22.7	530
210	Nanoporous polyelectrolyte vaccine microcarriers. A formulation platform for enhancing humoral and cellular immune responses. Journal of Controlled Release, 2014, 195, 99-109.	9.9	17
211	Allergens and the airway epithelium response: Gateway to allergic sensitization. Journal of Allergy and Clinical Immunology, 2014, 134, 499-507.	2.9	250
212	Emerging functions of the unfolded protein response in immunity. Nature Immunology, 2014, 15, 910-919.	14.5	213
213	Enhancement of Adaptive Immunity by the Human Vaccine Adjuvant AS01 Depends on Activated Dendritic Cells. Journal of Immunology, 2014, 193, 1920-1930.	0.8	220
214	A bidirectional crosstalk between iNKT cells and adipocytes mediated by leptin modulates susceptibility for T cell mediated hepatitis. Journal of Hepatology, 2014, 60, 175-182.	3.7	20
215	Flow cytometric sexing of spider sperm reveals an equal sperm production ratio in a female-biased species. Biology Letters, 2014, 10, 20140159.	2.3	4
216	How to generate large numbers of CD103+ dendritic cells. Blood, 2014, 124, 3036-3038.	1.4	4

#	Article	IF	CITATIONS
217	Mechanism of Adjuvanticity of Aluminum-Containing Formulas. , 2014, , 633-642.		1
218	Antigen-Presenting Dendritic Cells. , 2014, , 215-227.		1
219	The role of lung dendritic cell subsets in immunity to respiratory viruses. Immunological Reviews, 2013, 255, 57-67.	6.0	74
220	The UPR and lung disease. Seminars in Immunopathology, 2013, 35, 293-306.	6.1	58
221	Role of CXCL13 in Cigarette Smoke–induced Lymphoid Follicle Formation and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 343-355.	5.6	83
222	Dendritic cells in asthma. Current Opinion in Immunology, 2013, 25, 745-754.	5.5	56
223	Asthma and Coagulation. New England Journal of Medicine, 2013, 369, 1964-1966.	27.0	29
224	PAMPs and DAMPs in Allergy Exacerbation Models. Methods in Molecular Biology, 2013, 1032, 185-204.	0.9	3
225	Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Journal of Experimental Medicine, 2013, 210, 1977-1992.	8.5	976
226	Asthma: The importance of dysregulated barrier immunity. European Journal of Immunology, 2013, 43, 3125-3137.	2.9	110
227	The multiâ€faceted role of allergen exposure to the local airway mucosa. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 152-160.	5.7	38
228	Topical treatment targeting sphingosineâ€lâ€phosphate and sphingosine lyase abrogates experimental allergic rhinitis in a murine model. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 204-212.	5.7	22
229	Conventional and Monocyte-Derived CD11b+ Dendritic Cells Initiate and Maintain T Helper 2 Cell-Mediated Immunity to House Dust Mite Allergen. Immunity, 2013, 38, 322-335.	14.3	770
230	Death at the airway epithelium in asthma. Cell Research, 2013, 23, 588-589.	12.0	22
231	Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunology, 2013, 6, 464-473.	6.0	223
232	Cytokine targets in airway inflammation. Current Opinion in Pharmacology, 2013, 13, 351-361.	3.5	106
233	Mycobacterium tuberculosis manipulates pulmonary APCs subverting early immune responses. Immunobiology, 2013, 218, 393-401.	1.9	15
234	Natural and long-lasting cellular immune responses against influenza in the M2e-immune host. Mucosal Immunology, 2013, 6, 276-287.	6.0	42

#	Article	IF	CITATIONS
235	Absence of Siglec-H in MCMV Infection Elevates Interferon Alpha Production but Does Not Enhance Viral Clearance. PLoS Pathogens, 2013, 9, e1003648.	4.7	41
236	The pathogenesis of pulmonary fibrosis: a moving target. European Respiratory Journal, 2013, 41, 1207-1218.	6.7	252
237	Short cigarette smoke exposure facilitates sensitisation and asthma development in mice. European Respiratory Journal, 2013, 41, 1189-1199.	6.7	39
238	The European Respiratory Society fellowship programme: supporting young careers and building networks. European Respiratory Journal, 2013, 42, 564-567.	6.7	3
239	Pooling Birth Cohorts in Allergy and Asthma: European Union-Funded Initiatives – A MeDALL, CHICOS, ENRIECO, and GA2LEN Joint Paper. International Archives of Allergy and Immunology, 2013, 161, 1-10.	2.1	54
240	Bacterial CD1d–Restricted Glycolipids Induce IL-10 Production by Human Regulatory T Cells upon Cross-Talk with Invariant NKT Cells. Journal of Immunology, 2013, 191, 2174-2183.	0.8	29
241	The Mucosal Adjuvant Cholera Toxin B Instructs Non-Mucosal Dendritic Cells to Promote IgA Production Via Retinoic Acid and TGF-1². PLoS ONE, 2013, 8, e59822.	2.5	35
242	Potential of Immunoglobulin A to Prevent Allergic Asthma. Clinical and Developmental Immunology, 2013, 2013, 1-12.	3.3	41
243	Lung Dendritic Cells and Pulmonary Defence Mechanisms to Bacteria. , 2013, , 49-66.		2
244	TCR Gene Transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 Epitopes as Melanoma-Specific Immune Targets. Clinical and Developmental Immunology, 2012, 2012, 1-14.	3.3	39
245	Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses. Mucosal Immunology, 2012, 5, 150-160.	6.0	67
246	Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology, 2012, 51, 37-46.	1.9	204
247	Pulmonary Lymphoid Neogenesis in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 311-321.	5.6	249
248	A Dissociated Glucocorticoid Receptor Modulator Reduces Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma. Journal of Immunology, 2012, 188, 3478-3487.	0.8	81
249	Alveolar preservation with high inflation pressure and intermediate oxygen concentration reduces ischemia-reperfusion injury of the lung. Journal of Heart and Lung Transplantation, 2012, 31, 531-537.	0.6	5
250	Tertiary lymphoid organs in infection and autoimmunity. Trends in Immunology, 2012, 33, 297-305.	6.8	311
251	Evidence for local dendritic cell activation in pulmonary sarcoidosis. Respiratory Research, 2012, 13, 33.	3.6	29
252	Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid <scp>X</scp> receptor. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 1501-1510.	5.7	37

#	Article	IF	CITATIONS
253	Contribution of regulatory <scp>T</scp> cells to alleviation of experimental allergic asthma after specific immunotherapy. Clinical and Experimental Allergy, 2012, 42, 1519-1528.	2.9	41
254	Lung Dendritic Cells in Respiratory Viral Infection and Asthma: From Protection to Immunopathology. Annual Review of Immunology, 2012, 30, 243-270.	21.8	262
255	The who, where, and when of IgE in allergic airway disease. Journal of Allergy and Clinical Immunology, 2012, 129, 635-645.	2.9	165
256	Understanding the complexity of IgE-related phenotypes from childhood to young adulthood: A Mechanisms of the Development of Allergy (MeDALL) Seminar. Journal of Allergy and Clinical Immunology, 2012, 129, 943-954.e4.	2.9	68
257	Engineered 3D microporous gelatin scaffolds to study cell migration. Chemical Communications, 2012, 48, 3512.	4.1	20
258	Alum adjuvant: some of the tricks of the oldest adjuvant. Journal of Medical Microbiology, 2012, 61, 927-934.	1.8	266
259	Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nature Structural and Molecular Biology, 2012, 19, 938-947.	8.2	39
260	Polymeric Multilayer Capsule-Mediated Vaccination Induces Protective Immunity Against Cancer and Viral Infection. ACS Nano, 2012, 6, 2136-2149.	14.6	116
261	The airway epithelium in asthma. Nature Medicine, 2012, 18, 684-692.	30.7	755
262	Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. Journal of Experimental Medicine, 2012, 209, 1505-1517.	8.5	362
263	Surfaceâ€Engineered Polyelectrolyte Multilayer Capsules: Synthetic Vaccines Mimicking Microbial Structure and Function. Angewandte Chemie - International Edition, 2012, 51, 3862-3866.	13.8	80
264	Cellular networks controlling Th2 polarization in allergy and immunity. F1000 Biology Reports, 2012, 4, 6.	4.0	49
265	A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nature Genetics, 2011, 43, 908-912.	21.4	250
266	Initiation and maintenance of allergic inflammation: Team work at the interface of innate and adaptive immunity. Current Opinion in Immunology, 2011, 23, 769-771.	5.5	5
267	Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends in Immunology, 2011, 32, 157-164.	6.8	564
268	Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 579-587.	5.7	120
269	MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 596-604.	5.7	146
270	The neuropeptide calcitonin geneâ€related peptide affects allergic airway inflammation by modulating dendritic cell function. Clinical and Experimental Allergy, 2011, 41, 1609-1621.	2.9	72

#	Article	IF	CITATIONS
271	Cigarette smoking alters epithelial apoptosis and immune composition in murine GALT. Laboratory Investigation, 2011, 91, 1056-1067.	3.7	59
272	Designing polymeric particles for antigen delivery. Chemical Society Reviews, 2011, 40, 320-339.	38.1	131
273	TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways. Respiratory Research, 2011, 12, 125.	3.6	71
274	Antiâ€inflammatory actions of phosphatidylinositol. European Journal of Immunology, 2011, 41, 1047-1057.	2.9	25
275	CLECâ€2 signaling via Syk in myeloid cells can regulate inflammatory responses. European Journal of Immunology, 2011, 41, 3040-3053.	2.9	75
276	Disruption of the SapM locus in <i>Mycobacterium bovis</i> BCG improves its protective efficacy as a vaccine against <i>M. tuberculosis</i> . EMBO Molecular Medicine, 2011, 3, 222-234.	6.9	39
277	An Unexpected Role for Uric Acid as an Inducer of T Helper 2 Cell Immunity to Inhaled Antigens and Inflammatory Mediator of Allergic Asthma. Immunity, 2011, 34, 527-540.	14.3	328
278	The Ubiquitin-Editing Protein A20 Prevents Dendritic Cell Activation, Recognition of Apoptotic Cells, and Systemic Autoimmunity. Immunity, 2011, 35, 82-96.	14.3	222
279	C-Kit–Positive Cells Accumulate in Remodeled Vessels of Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 116-123.	5.6	176
280	Persistent Activation of Dendritic Cells after Resolution of Allergic Airway Inflammation Breaks Tolerance to Inhaled Allergens in Mice. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 303-311.	5.6	64
281	Role of IL-1Â and the Nlrp3/caspase-1/IL-1Â axis in cigarette smoke-induced pulmonary inflammation and COPD. European Respiratory Journal, 2011, 38, 1019-1028.	6.7	221
282	Dual Role of IL-22 in Allergic Airway Inflammation and its Cross-talk with IL-17A. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1153-1163.	5.6	187
283	A20 (TNFAIP3) deficiency in myeloid cells triggers rheumatoid arthritis. Annals of the Rheumatic Diseases, 2011, 70, A39-A40.	0.9	0
284	Facilitated antigen uptake and timed exposure to TLR ligands dictate the antigen-presenting potential of plasmacytoid DCs. Journal of Leukocyte Biology, 2011, 90, 1177-1190.	3.3	42
285	NLRP3/Caspase-1–Independent IL-1β Production Mediates Diesel Exhaust Particle-Induced Pulmonary Inflammation. Journal of Immunology, 2011, 187, 3331-3337.	0.8	86
286	ERS is founding member of a new Alliance for Biomedical Research in Europe. European Respiratory Journal, 2011, 38, 237-238.	6.7	6
287	The Role of ChemR23 in the Induction and Resolution of Cigarette Smoke-Induced Inflammation. Journal of Immunology, 2011, 186, 5457-5467.	0.8	56
288	Highly Pathogenic Avian Influenza Virus H5N1 Infects Alveolar Macrophages without Virus Production or Excessive TNF-Alpha Induction. PLoS Pathogens, 2011, 7, e1002099.	4.7	80

#	Article	IF	CITATIONS
289	Involvement of Endoplasmic Reticulum Stress in Inflammatory Bowel Disease: A Different Implication for Colonic and Ileal Disease?. PLoS ONE, 2011, 6, e25589.	2.5	63
290	Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. Blood, 2010, 115, 5329-5337.	1.4	81
291	Vegf regulates embryonic erythroid development through Gata1 modulation. Blood, 2010, 116, 2141-2151.	1.4	23
292	High mobility group boxâ€l recognition: The beginning of a RAGEless era?. EMBO Molecular Medicine, 2010, 2, 193-195.	6.9	19
293	T-cell regulation of neutrophil infiltrate at the early stages of a murine colitis model. Inflammatory Bowel Diseases, 2010, 16, 442-451.	1.9	27
294	Origin and functional specializations of DC subsets in the lung. European Journal of Immunology, 2010, 40, 2112-2118.	2.9	60
295	Invariant natural killer T cells are natural regulators of murine spondylarthritis. Arthritis and Rheumatism, 2010, 62, 988-999.	6.7	47
296	United airways: circulating Th2 effector cells in an allergic rhinitis model are responsible for promoting lower airways inflammation. Clinical and Experimental Allergy, 2010, 40, 494-504.	2.9	37
297	<i>Staphylococcus aureus</i> enterotoxin B facilitates allergic sensitization in experimental asthma. Clinical and Experimental Allergy, 2010, 40, 1079-1090.	2.9	65
298	Suppression of Th2-Driven Airway Inflammation by Allergen Immunotherapy Is Independent of B Cell and Ig Responses in Mice. Journal of Immunology, 2010, 185, 3857-3865.	0.8	29
299	Diesel Exhaust Particles Stimulate Adaptive Immunity by Acting on Pulmonary Dendritic Cells. Journal of Immunology, 2010, 184, 426-432.	0.8	71
300	Flow cytometric differentiation of avian leukocytes and analysis of their intracellular cytokine expression. Avian Pathology, 2010, 39, 41-46.	2.0	28
301	The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet, The, 2010, 376, 835-843.	13.7	226
302	Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. Journal of Experimental Medicine, 2010, 207, 2097-2111.	8.5	541
303	Consolidative Dendritic Cell-based Immunotherapy Elicits Cytotoxicity against Malignant Mesothelioma. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 1383-1390.	5.6	131
304	Studying the Function of Dendritic Cells in Mouse Models of Asthma. Methods in Molecular Biology, 2010, 595, 331-349.	0.9	4
305	Sensitization by intratracheally injected dendritic cells is independent of antigen presentation by host antigen-presenting cells. Journal of Leukocyte Biology, 2009, 85, 64-70.	3.3	14
306	Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus–infected mice. Journal of Experimental Medicine, 2009, 206, 2339-2349.	8.5	311

#	Article	IF	CITATIONS
307	Surfactant pretreatment decreases long-term damage after ischemia-reperfusion injury of the lungâ~†. European Journal of Cardio-thoracic Surgery, 2009, 35, 304-312.	1.4	10
308	An Anti-Inflammatory Role for Plasmacytoid Dendritic Cells in Allergic Airway Inflammation. Journal of Immunology, 2009, 183, 1074-1082.	0.8	151
309	Cyclooxygenase-2 in mucosal DC mediates induction of regulatory T cells in the intestine through suppression of IL-4. Mucosal Immunology, 2009, 2, 254-264.	6.0	43
310	Protein Profiling of Pleural Effusions to Identify Malignant Pleural Mesothelioma Using SELDI-TOF MS. Technology in Cancer Research and Treatment, 2009, 8, 323-332.	1.9	30
311	The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen. Journal of Experimental Medicine, 2009, 206, 2823-2835.	8.5	30
312	Protein Tyrosine Phosphatases Regulate Asthma Development in a Murine Asthma Model. Journal of Immunology, 2009, 182, 1334-1340.	0.8	11
313	A novel method for isolating dendritic cells from human bronchoalveolar lavage fluid. Journal of Immunological Methods, 2009, 351, 13-23.	1.4	12
314	Biology of Lung Dendritic Cells at the Origin of Asthma. Immunity, 2009, 31, 412-424.	14.3	321
315	The danger within: endogenous danger signals, atopy and asthma. Clinical and Experimental Allergy, 2009, 39, 12-19.	2.9	140
316	House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Medicine, 2009, 15, 410-416.	30.7	977
317	Blockade of CCR4 in a humanized model of asthma reveals a critical role for DCâ€derived CCL17 and CCL22 in attracting Th2 cells and inducing airway inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 995-1002.	5.7	137
318	Mechanism of action of clinically approved adjuvants. Current Opinion in Immunology, 2009, 21, 23-29.	5.5	309
319	Cholera toxin B suppresses allergic inflammation through induction of secretory IgA. Mucosal Immunology, 2009, 2, 331-339.	6.0	102
320	Selective control of SIRP-α–positive airway dendritic cell trafficking through CD47 is critical for the development of TH2-mediated allergic inflammation. Journal of Allergy and Clinical Immunology, 2009, 124, 1333-1342.e1.	2.9	74
321	Dendritic Cells in Asthma and COPD. , 2009, , 121-132.		Ο
322	Technical note: Flow cytometric identification of bovine milk neutrophils and simultaneous quantification of their viability. Journal of Dairy Science, 2009, 92, 626-631.	3.4	41
323	Dendritic Cells in Rhinitis. Handbook of Experimental Pharmacology, 2009, , 115-136.	1.8	5
324	Lung Dendritic Cells: Targets for Therapy in Allergic Disease. Handbook of Experimental Pharmacology, 2009, , 99-114.	1.8	11

#	Article	IF	CITATIONS
325	Effect of Cigarette Smoke Extract on Dendritic Cells and Their Impact on T-Cell Proliferation. PLoS ONE, 2009, 4, e4946.	2.5	59
326	Both Conventional and Interferon Killer Dendritic Cells Have Antigen-Presenting Capacity during Influenza Virus Infection. PLoS ONE, 2009, 4, e7187.	2.5	36
327	Function of Dendritic Cell Subsets in Allergic Disease. , 2009, , 209-230.		0
328	Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nature Reviews Immunology, 2008, 8, 193-204.	22.7	560
329	Important research questions in allergy and related diseases: nonallergic rhinitis: a GA ² LEN paper. Allergy: European Journal of Allergy and Clinical Immunology, 2008, 63, 842-853.	5.7	158
330	Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. Canadian Journal of Physiology and Pharmacology, 2008, 86, 105-112.	1.4	198
331	Ischemia of the lung causes extensive long-term pulmonary injury: an experimental study. Respiratory Research, 2008, 9, 28.	3.6	24
332	Lung dendritic cells are stimulated by ultrafine particles and play a key role in particle adjuvant activity. Journal of Allergy and Clinical Immunology, 2008, 121, 1246-1254.	2.9	65
333	Exosomes. Methods in Molecular Biology, 2008, 484, 97-109.	0.9	27
334	Division of labor between dendritic cell subsets of the lung. Mucosal Immunology, 2008, 1, 442-450.	6.0	151
335	Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. Journal of Experimental Medicine, 2008, 205, 869-882.	8.5	838
336	Cutting Edge: Alum Adjuvant Stimulates Inflammatory Dendritic Cells through Activation of the NALP3 Inflammasome. Journal of Immunology, 2008, 181, 3755-3759.	0.8	548
337	Lung Dendritic Cells: Targets for Therapy in Allergic Disease. Chemical Immunology and Allergy, 2008, 94, 189-200.	1.7	11
338	Lung Dendritic Cells: Targets for Therapy in Allergic Disease. Current Molecular Medicine, 2008, 8, 393-400.	1.3	22
339	Sustained desensitization to bacterial Toll-like receptor ligands after resolutionof respiratory influenza infection. Journal of Experimental Medicine, 2008, 205, 323-329.	8.5	353
340	Clearance of influenza virus from the lung depends on migratory langerin+CD11bâ^' but not plasmacytoid dendritic cells. Journal of Experimental Medicine, 2008, 205, 1621-1634.	8.5	419
341	Inducible Costimulator Blockade Prolongs Airway Luminal Patency in a Mouse Model of Obliterative Bronchiolitis. Transplantation, 2008, 86, 1436-1444.	1.0	8
342	The Balance between Plasmacytoid DC versus Conventional DC Determines Pulmonary Immunity to Virus Infections. PLoS ONE, 2008, 3, e1720.	2.5	80

#	Article	IF	CITATIONS
343	Keratinocyte Growth Factor Induces Expansion of Murine Peripheral CD4+Foxp3+Regulatory T Cells and Increases Their Thymic Output. Journal of Immunology, 2007, 179, 7424-7430.	0.8	19
344	LUNG DENDRITIC CELLS: FROM BASIC PHYSIOLOGY TO CLINICAL APPLICATIONS. Acta Clinica Belgica, 2007, 62, 330-334.	1.2	1
345	The pressure mounts on lung dendritic cells. European Respiratory Journal, 2007, 29, 435-437.	6.7	4
346	Gata1 regulates dendritic-cell development and survival. Blood, 2007, 110, 1933-1941.	1.4	55
347	Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. Journal of Experimental Medicine, 2007, 204, 357-367.	8.5	175
348	Protective effect of Schistosoma mansoni infection on allergic airway inflammation depends on the intensity and chronicity of infection. Journal of Allergy and Clinical Immunology, 2007, 120, 932-940.	2.9	147
349	Lung Dendritic Cell Migration. Advances in Immunology, 2007, 93, 265-278.	2.2	61
350	GATA3-Driven Th2 Responses Inhibit TGF-β1–Induced FOXP3 Expression and the Formation of Regulatory T Cells. PLoS Biology, 2007, 5, e329.	5.6	245
351	Cells meeting our immunophenotypic criteria of endothelial cells are large platelets. Cytometry Part B - Clinical Cytometry, 2007, 72B, 86-93.	1.5	63
352	Gene expression profiling and gene copyâ€number changes in malignant mesothelioma cell lines. Genes Chromosomes and Cancer, 2007, 46, 895-908.	2.8	14
353	Dendritic cells in asthma and COPD: opportunities for drug development. Current Opinion in Immunology, 2007, 19, 701-710.	5.5	30
354	Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nature Medicine, 2007, 13, 570-578.	30.7	164
355	Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nature Medicine, 2007, 13, 913-919.	30.7	559
356	Respiratory syncytial virus differentially activates murine myeloid and plasmacytoid dendritic cells. Immunology, 2007, 122, 65-72.	4.4	38
357	Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function. Journal of Clinical Investigation, 2007, 117, 464-472.	8.2	113
358	Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. Journal of Allergy and Clinical Immunology, 2006, 118, 331-336.	2.9	120
359	An essential role for dendritic cells in human and experimental allergic rhinitis. Journal of Allergy and Clinical Immunology, 2006, 118, 1117-1125.	2.9	104
360	Mouse models of asthma and rhinitis to study the role of dendritic cells in sensitization and development of inflammation. Drug Discovery Today: Disease Models, 2006, 3, 205-211.	1.2	2

#	Article	IF	CITATIONS
361	Dendritic cells in Asthma: A target for novel therapeutics?. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 299-307.	0.5	2
362	RÃ1e desÂdifférentes populations deÂcellules dendritiques dansÂl'asthme allergique. Revue Francaise D'allergologie Et D'immunologie Clinique, 2006, 46, 128-130.	0.1	0
363	Alveolar Macrophage in the Driver's Seat. Immunity, 2006, 24, 366-368.	14.3	199
364	Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. European Journal of Immunology, 2006, 36, 2472-2482.	2.9	164
365	Mesothelioma environment comprises cytokines and T-regulatory cells that suppress immune responses. European Respiratory Journal, 2006, 27, 1086-1095.	6.7	144
366	An unexpected role for the anaphylatoxin C5a receptor in allergic sensitization. Journal of Clinical Investigation, 2006, 116, 628-632.	8.2	24
367	Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. Journal of Clinical Investigation, 2006, 116, 2935-2944.	8.2	236
368	Infections and asthma pathogenesis: a critical role for dendritic cells?. Novartis Foundation Symposium, 2006, 279, 187-200; discussion 200-5, 216-9.	1.1	3
369	Dendritic cells and the regulation of the allergic immune response. Allergy: European Journal of Allergy and Clinical Immunology, 2005, 60, 271-282.	5.7	94
370	Dendritic cells in asthma: a function beyond sensitization. Clinical and Experimental Allergy, 2005, 35, 1125-1134.	2.9	80
371	Surfactant pretreatment ameliorates ischemia-reperfusion injury of the lung. European Journal of Cardio-thoracic Surgery, 2005, 27, 774-782.	1.4	22
372	Treatment of Experimental Asthma by Decoy-mediated Local Inhibition of Activator Protein-1. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 671-678.	5.6	43
373	Immunotherapy of Murine Malignant Mesothelioma Using Tumor Lysate–pulsed Dendritic Cells. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1168-1177.	5.6	99
374	Proinflammatory Bacterial Peptidoglycan as a Cofactor for the Development of Central Nervous System Autoimmune Disease. Journal of Immunology, 2005, 174, 808-816.	0.8	113
375	In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. Journal of Experimental Medicine, 2005, 201, 981-991.	8.5	573
376	Respiratory viral infections and asthma pathogenesis: A critical role for dendritic cells?. Journal of Clinical Virology, 2005, 34, 161-169.	3.1	41
377	Modification of dendritic cell function as a tool to prevent and treat allergic asthma. Vaccine, 2005, 23, 4577-4588.	3.8	15
378	Dendritic cell subsets and immune regulation in the lung. Seminars in Immunology, 2005, 17, 295-303.	5.6	119

#	Article	IF	CITATIONS
379	Activation of the D Prostanoid Receptor 1 Regulates Immune and Skin Allergic Responses. Journal of Immunology, 2004, 172, 3822-3829.	0.8	83
380	Dendritic cells retrovirally overexpressing IL-12 induce strong Th1 responses to inhaled antigen in the lung but fail to revert established Th2 sensitization. Journal of Leukocyte Biology, 2004, 76, 1028-1038.	3.3	51
381	Differential capacity of CD8alpha+ or CD8alpha- dendritic cell subsets to prime for eosinophilic airway inflammation in the T-helper type 2-prone milieu of the lung. Clinical and Experimental Allergy, 2004, 34, 1834-1840.	2.9	39
382	In situ analysis of lung antigen-presenting cells during murine pulmonary infection with virulent Mycobacterium tuberculosis. International Journal of Experimental Pathology, 2004, 85, 135-145.	1.3	36
383	A rapid flow cytometric method for determining the cellular composition of bronchoalveolar lavage fluid cells in mouse models of asthma. Journal of Immunological Methods, 2004, 288, 111-121.	1.4	161
384	Airways infection with virulent Mycobacterium tuberculosis delays the influx of dendritic cells and the expression of costimulatory molecules in mediastinal lymph nodes. Immunology, 2004, 112, 661-668.	4.4	37
385	The interplay of dendritic cells, Th2 cells and regulatory T cells in asthma. Current Opinion in Immunology, 2004, 16, 702-708.	5.5	97
386	Essential role of dendritic cell CD80/CD86 costimulation in the induction, but not reactivation, of TH2 effector responses in a mouse model of asthma. Journal of Allergy and Clinical Immunology, 2004, 114, 166-173.	2.9	116
387	Essential Role of Lung Plasmacytoid Dendritic Cells in Preventing Asthmatic Reactions to Harmless Inhaled Antigen. Journal of Experimental Medicine, 2004, 200, 89-98.	8.5	720
388	Proteomic Analysis of Exosomes Isolated from Human Malignant Pleural Effusions. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 114-121.	2.9	366
389	Activation of Peroxisome Proliferator-Activated Receptor-Î ³ in Dendritic Cells Inhibits the Development of Eosinophilic Airway Inflammation in a Mouse Model of Asthma. American Journal of Pathology, 2004, 164, 263-271.	3.8	162
390	Proteomic Analysis of Exosomes Secreted by Human Mesothelioma Cells. American Journal of Pathology, 2004, 164, 1807-1815.	3.8	318
391	Activated protein C inhibits bronchial hyperresponsiveness and Th2 cytokine expression in mice. Blood, 2004, 103, 2196-2204.	1.4	91
392	Taking our breath away: dendritic cells in the pathogenesis of asthma. Nature Reviews Immunology, 2003, 3, 994-1003.	22.7	322
393	Lipopolysaccharide-Induced Suppression of Airway Th2 Responses Does Not Require IL-12 Production by Dendritic Cells. Journal of Immunology, 2003, 171, 3645-3654.	0.8	96
394	Airway Eosinophils Accumulate in the Mediastinal Lymph Nodes but Lack Antigen-Presenting Potential for Naive T Cells. Journal of Immunology, 2003, 171, 3372-3378.	0.8	77
395	Prostaglandin D2 Inhibits Airway Dendritic Cell Migration and Function in Steady State Conditions by Selective Activation of the D Prostanoid Receptor 1. Journal of Immunology, 2003, 171, 3936-3940.	0.8	174
396	Peroxisome Proliferator-Activated Receptor Î ³ Inhibits the Migration of Dendritic Cells: Consequences for the Immune Response. Journal of Immunology, 2003, 170, 5295-5301.	0.8	85

#	Article	IF	CITATIONS
397	The other cells in asthma: dendritic cell and epithelial cell crosstalk. Current Opinion in Pulmonary Medicine, 2003, 9, 34-41.	2.6	27
398	Monocyte-Derived Dendritic Cells Induce a House Dust Mite-Specific Th2 Allergic Inflammation in the Lung of Humanized SCID Mice: Involvement of CCR7. Journal of Immunology, 2002, 169, 1524-1534.	0.8	109
399	Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31hiLy-6Cneg bone marrow precursors in a mouse model of asthma. Blood, 2002, 100, 3663-3671.	1.4	129
400	Myeloid dendritic cells make it to the top. Clinical and Experimental Allergy, 2002, 32, 805-810.	2.9	14
401	Effect of ozone exposure on allergic sensitization and airway inflammation induced by dendritic cells. Clinical and Experimental Allergy, 2002, 32, 391-396.	2.9	41
402	Immunologists getting nervous: neuropeptides, dendritic cells and T cell activation. Respiratory Research, 2001, 2, 133-8.	3.6	113
403	Allergen uptake and presentation by dendritic cells. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 51-59.	2.3	56
404	The dendritic cell in allergic airway diseases: a new player to the game. Clinical and Experimental Allergy, 2001, 31, 206-218.	2.9	49
405	Role of dendritic cells and Th2 lymphocytes in asthma: Lessons from eosinophilic airway inflammation in the mouse. Microscopy Research and Technique, 2001, 53, 256-272.	2.2	34
406	Dendritic Cells as Regulators of the Immune Response to Inhaled Allergen: Recent Findings in Animal Models of Asthma. International Archives of Allergy and Immunology, 2001, 124, 432-446.	2.1	26
407	Enforced Expression of GATA-3 in Transgenic Mice Inhibits Th1 Differentiation and Induces the Formation of a T1/ST2-Expressing Th2-Committed T Cell Compartment In Vivo. Journal of Immunology, 2001, 167, 724-732.	0.8	83
408	Specific Migratory Dendritic Cells Rapidly Transport Antigen from the Airways to the Thoracic Lymph Nodes. Journal of Experimental Medicine, 2001, 193, 51-60.	8.5	509
409	Allergen uptake and presentation by dendritic cells. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 51-59.	2.3	34
410	Induction of Rapid T Cell Activation, Division, and Recirculation by Intratracheal Injection of Dendritic Cells in a TCR Transgenic Model. Journal of Immunology, 2000, 164, 2937-2946.	0.8	170
411	Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. Journal of Clinical Investigation, 2000, 106, 551-559.	8.2	454
412	Allergen-Induced Changes in Bone-Marrow Progenitor and Airway Dendritic Cells in Sensitized Rats. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 1165-1174.	2.9	74
413	Endogenously produced substance P contributes to lymphocyte proliferation induced by dendritic cells and direct TCR ligation. European Journal of Immunology, 1999, 29, 3815-3825.	2.9	162
414	Presence of substance P and neurokinin 1 receptors in human sputum macrophages and Uâ€937 cells. European Respiratory Journal, 1999, 14, 776.	6.7	80

#	Article	IF	CITATIONS
415	THE DENDRITIC CELL: ITS POTENT ROLE IN THE RESPIRATORY IMMUNE RESPONSE. Cell Biology International, 1996, 20, 111-120.	3.0	17
416	Infections and Asthma Pathogenesis: A Critical Role for Dendritic Cells?. Novartis Foundation Symposium, 0, , 187-205.	1.1	5