Jordi Marsal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9276602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrigation Science, 2006, 24, 115-127.	2.8	182
2	Peach tree response to single and combined deficit irrigation regimes in deep soils. Agricultural Water Management, 2005, 72, 97-108.	5.6	104
3	Regulated deficit irrigation during the kernel-filling period and optimal irrigation rates in almond. Agricultural Water Management, 2005, 75, 152-167.	5.6	103
4	Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrigation Science, 2015, 33, 81-93.	2.8	102
5	Daily shoot extension growth of peach trees growing on rootstocks that reduce scion growth is related to daily dynamics of stem water potential. Tree Physiology, 2003, 23, 695-704.	3.1	100

 $_{6}$ Phenological sensitivity of berry growth and composition of Tempranillo grapevines (<i>Vitis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542

7	Peach Tree Response to Single and Combined Regulated Deficit Irrigation Regimes under Shallow Soils. Journal of the American Society for Horticultural Science, 2003, 128, 432-440.	1.0	89
8	Airborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards. Remote Sensing, 2016, 8, 39.	4.0	83
9	Phenological Sensitivity of Cabernet Sauvignon to Water Stress: Vine Physiology and Berry Composition. American Journal of Enology and Viticulture, 2011, 62, 452-461.	1.7	81
10	Regulated deficit irrigation and rectification of irrigation scheduling in young pear trees: an evaluation based on vegetative and productive response. European Journal of Agronomy, 2002, 17, 111-122.	4.1	70
11	A comparative study of apple and pear tree water consumption measured with two weighing lysimeters. Irrigation Science, 2011, 29, 55-63.	2.8	69
12	Effects of stage II and postharvest deficit irrigation on peach quality during maturation and after cold storage. Journal of the Science of Food and Agriculture, 2004, 84, 561-568.	3.5	68
13	Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: A simplified approach. Agricultural and Forest Meteorology, 2013, 171-172, 93-103.	4.8	66
14	Evaluation of partial root-zone drying for potential field use as a deficit irrigation technique in commercial vineyards according to two different pipeline layouts. Irrigation Science, 2008, 26, 347-356.	2.8	65
15	Postharvest regulated deficit irrigation in â€ ⁻ Summit' sweet cherry: fruit yield and quality in the following season. Irrigation Science, 2010, 28, 181-189.	2.8	61
16	Influence of branch autonomy on fruit, scaffold, trunk and root growth during Stage III of peach fruit development. Tree Physiology, 2003, 23, 313-323.	3.1	53
17	A general algorithm for automated scheduling of drip irrigation in tree crops. Computers and Electronics in Agriculture, 2012, 83, 11-20.	7.7	53
18	Pear fruit growth under regulated deficit irrigation in container-grown trees. Scientia Horticulturae, 2000, 85, 243-259.	3.6	50

Jordi Marsal

#	Article	IF	CITATIONS
19	Relationship between Leaf Water Potential and Gas Exchange Activity at Different Phenological Stages and Fruit Loads in Peach Trees. Journal of the American Society for Horticultural Science, 1997, 122, 415-421.	1.0	47
20	Fruit thinning in â€~Conference' pear grown under deficit irrigation: Implications for fruit quality at harvest and after cold storage. Scientia Horticulturae, 2011, 129, 64-70.	3.6	46
21	Seasonal sensitivity of stem water potential to vapour pressure deficit in grapevine. Irrigation Science, 2009, 27, 175-182.	2.8	41
22	Mitigation of effects of extreme drought during stage III of peach fruit development by summer pruning and fruit thinning. Tree Physiology, 2006, 26, 469-477.	3.1	40
23	Crop coefficient (K c) for apple: comparison between measurements by a weighing lysimeter and prediction by CropSyst. Irrigation Science, 2013, 31, 455-463.	2.8	38
24	Leaf Water Relation Parameters in Almond Compared to Hazelnut Trees during a Deficit Irrigation Period. Journal of the American Society for Horticultural Science, 1997, 122, 582-587.	1.0	38
25	Growth patterns and morphology of fine roots of size-controlling and invigorating peach rootstocks. Tree Physiology, 2007, 27, 231-241.	3.1	37
26	Factors involved in alleviating water stress by partial crop removal in pear trees. Tree Physiology, 2008, 28, 1375-1382.	3.1	37
27	Mitigation of severe water stress by fruit thinning in â€~O'Henry' peach: Implications for fruit quality. Scientia Horticulturae, 2010, 125, 294-300.	3.6	35
28	Fraction of canopy intercepted radiation relates differently with crop coefficient depending on the season and the fruit tree species. Agricultural and Forest Meteorology, 2014, 184, 1-11.	4.8	34
29	Response of peach trees to regulated deficit irrigation during stage 2 of fruit development and summer pruning. Spanish Journal of Agricultural Research, 2008, 6, 479.	0.6	34
30	Intercepted radiation by apple canopy can be used as a basis for irrigation scheduling. Agricultural Water Management, 2011, 98, 886-892.	5.6	32
31	Use of CropSyst as a decision support system for scheduling regulated deficit irrigation in a pear orchard. Irrigation Science, 2012, 30, 139-147.	2.8	32
32	Responses of "Chardonnay―to deficit irrigation applied at different phenological stages: vine growth, must composition, and wine quality. Irrigation Science, 2012, 30, 397-406.	2.8	31
33	Response of winter root starch concentration to severe water stress and fruit load and its subsequent effects on early peach fruit development. Tree Physiology, 2007, 27, 1619-1626.	3.1	29
34	Exploring six reduced irrigation options under water shortage for â€~Golden Smoothee' apple: Responses of yield components over three years. Agricultural Water Management, 2010, 98, 370-375.	5.6	28
35	ldentifying irrigation zones across a 7.5-ha â€~Pinot noir' vineyard based on the variability of vine water status and multispectral images. Irrigation Science, 2012, 30, 499-509.	2.8	26
36	Water stress for a short period before harvest in nectarine: Yield, fruit composition, sensory quality, and consumer acceptance of fruit. Scientia Horticulturae, 2016, 211, 1-7.	3.6	26

Jordi Marsal

#	Article	IF	CITATIONS
37	Postharvest deficit irrigation in â€~Conference' pear: Effects on subsequent yield and fruit quality. Agricultural Water Management, 2012, 103, 1-7.	5.6	24
38	Branch removal and defruiting for the amelioration of water stress effects on fruit growth during Stage III of peach fruit development. Scientia Horticulturae, 2006, 108, 55-60.	3.6	23
39	Sustainability of regulated deficit irrigation in a mid-maturing peach cultivar. Irrigation Science, 2016, 34, 201-208.	2.8	23
40	Effect of late Spring defruiting on net CO ₂ exchange and leaf area development in apple tree canopies. Journal of Horticultural Science and Biotechnology, 2006, 81, 575-582.	1.9	18
41	Automated irrigation of apple trees based on measurements of light interception by the canopy. Biosystems Engineering, 2011, 108, 220-226.	4.3	14
42	Yield, Must Composition, and Wine Quality Responses to Preveraison Water Deficits in Sparkling Base Wines of Chardonnay. American Journal of Enology and Viticulture, 2016, 67, 1-12.	1.7	14
43	Daily photosynthetic radiation use efficiency for apple and pear leaves: Seasonal changes and estimation of canopy net carbon exchange rate. European Journal of Agronomy, 2013, 51, 1-8.	4.1	13
44	Use of CropSyst as a tool to predict water use and crop coefficient in Japanese plum trees. Agricultural Water Management, 2014, 146, 57-68.	5.6	13
45	Drought in Deciduous Fruit Trees: Implications for Yield and Fruit Quality. , 2012, , 441-459.		7
46	Responses of â€~Conference' Pear to Deficit Irrigation: Water Relations, Leaf Discrimination Against 13CO2, Tree Starch Content, Growth, and Recovery After Rewatering. Journal of Plant Growth Regulation, 2013, 32, 273-280.	5.1	5
47	Post-Harvest Regulated Deficit Irrigation in Chardonnay Did Not Reduce Yield but at Long-Term, It Could Affect Berry Composition. Agronomy, 2019, 9, 328.	3.0	4
48	Water stress during the post-harvest period affects new root formation but not starch concentration and content in Chardonnay grapevine (Vitis vinifera L.) perennial organs. Scientia Horticulturae, 2019, 249, 461-470.	3.6	3
49	Water stress for a long period before harvest and crop load effects on marketable yield and consumer acceptance of nectarine. Scientia Horticulturae, 2019, 255, 103-107.	3.6	2