Bartlomiej Szafran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aharonov-Bohm oscillations in phosphorene quantum rings: Mass anisotropy compensation by confinement potential. Physical Review B, 2022, 105, .	3.2	11
2	Nagaoka spin-valley ordering in silicene quantum dots. Physical Review B, 2021, 103, .	3.2	1
3	Effective Landé factors for an electrostatically defined quantum point contact in silicene. Scientific Reports, 2021, 11, 19892.	3.3	0
4	Annular confinement for electrons on liquid helium. Physical Review B, 2021, 104, .	3.2	3
5	Controllable spin filtering and half-metallicity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>β</mml:mi><mml:mn>12-borophene nanoribbons. Physical Review B, 2021, 104, .</mml:mn></mml:msub></mml:math 	יח <i>8⊈</i> mml:	m s ub>
6	Fast evaluation of interaction integrals for confined systems with machine learning. Physical Review B, 2020, 102, .	3.2	0
7	Electrostatic quantum dot confinement in phosphorene. Physical Review B, 2020, 101, .	3.2	7
8	Aharonov-Bohm oscillations of four-probe resistance in topological quantum rings in silicene and bilayer graphene. Physical Review B, 2020, 101, .	3.2	4
9	Persistent currents in topological and trivial confinement in silicene. Physical Review B, 2020, 101, .	3.2	3
10	Paired electron motion in interacting chains of quantum dots. Physical Review B, 2020, 101, .	3.2	10
11	Topologically protected wave packets and quantum rings in silicene. Physical Review B, 2019, 100, .	3.2	5
12	Electron interferometry and quantum spin Hall phase in silicene. Physical Review B, 2019, 99, .	3.2	5
13	Finite-difference method for Dirac electrons in circular quantum dots. Physical Review B, 2019, 99, .	3.2	4
14	Electrical control of a confined electron spin in a silicene quantum dot. Physical Review B, 2018, 97, .	3.2	7
15	Imaging spin-resolved cyclotron trajectories in the InSb two-dimensional electron gas. Physical Review B, 2018, 98, .	3.2	2
16	Spin and valley control in single and double electrostatic silicene quantum dots. Physical Review B, 2018, 98, .	3.2	7
17	Aharonov-Bohm conductance oscillations and current equilibration in local <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>â^'junctions in graphene. Physical Review B, 2018, 98, .</mml:mo></mml:mrow></mml:math 	io ær⊉nml:n	niæp
18	Circular n-p Junctions in Graphene Nanoribbons. Nanoscience and Technology, 2018, , 559-580.	1.5	0

2

#	Article	IF	CITATIONS
19	Spin-active devices based on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>graphene</mml:mi><mml:mo>/<!--<br-->heterostructures. Physical Review B, 2018, 98, .</mml:mo></mml:mrow></mml:math 	mmalamo><	manl:msub><
20	Pauli blockade microscopy of quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 22-28.	2.7	0
21	Electrostatic quantum dots in silicene. Scientific Reports, 2018, 8, 7166.	3.3	15
22	Electron spin inversion in gated silicene nanoribbons. Physical Review B, 2018, 98, .	3.2	18
23	Wannier-Bloch approach to localization in high-order harmonic generation in solids. , 2018, , .		0
24	lmaging snake orbits at graphene <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>â^'junctions. Physical Review B, 2017, 95, .</mml:mo></mml:mrow></mml:math 	ıo ı∞ı₂ nml:r	niೠk/mml:m
25	Simulation of the Coulomb blockade microscopy of quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 70-77.	2.7	0
26	Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots. Semiconductor Science and Technology, 2017, 32, 065016.	2.0	0
27	Spin-valley dynamics of electrically driven ambipolar carbon-nanotube quantum dots. Journal of Physics Condensed Matter, 2017, 29, 285301.	1.8	4
28	Spin separation and exchange for quantum dots in the Overhauser field. Physical Review B, 2017, 95, .	3.2	1
29	Wannier-Bloch Approach to Localization in High-Harmonics Generation in Solids. Physical Review X, 2017, 7, .	8.9	83
30	Double quantum dots defined in bilayer graphene. Physical Review B, 2017, 96, .	3.2	6
31	Spin-valley resolved photon-assisted tunneling in carbon nanotube double quantum dots. Physical Review B, 2017, 95, .	3.2	5
32	Imaging backscattering in graphene quantum point contacts. Physical Review B, 2017, 96, .	3.2	7
33	Manipulating quantum Hall edge channels in graphene through scanning gate microscopy. Physical Review B, 2017, 96, .	3.2	8
34	Extraction of the Rashba spin-orbit coupling constant from scanning gate microscopy conductance maps for quantum point contacts. Scientific Reports, 2017, 7, 14935.	3.3	1
35	Electron spin inversion in fluorinated graphene nanoribbons. Physical Review B, 2017, 96, .	3.2	5
36	Current Trends in Nanoeducation for Industry and Society. Current Bionanotechnology, 2017, 2, 112-115.	0.6	1

#	Article	IF	CITATIONS
37	Lorentz force effects for graphene Aharonov-Bohm interferometers. Physical Review B, 2016, 94, .	3.2	15
38	Theory of ballistic quantum transport in the presence of localized defects. Physical Review B, 2016, 94,	3.2	3
39	Interference features in scanning gate conductance maps of quantum point contacts with disorder. Physical Review B, 2016, 94, .	3.2	26
40	Conductance measurement of spin-orbit coupling in two-dimensional electron systems with an in-plane magnetic field. Physical Review B, 2016, 94, .	3.2	1
41	Transconductance and effective LandÃ $@$ factors for quantum point contacts: Spin-orbit coupling and interaction effects. Physical Review B, 2016, 93, .	3.2	10
42	Aharonov-Bohm interferometer based on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>â^'in graphene nanoribbons. Physical Review B, 2016, 93, .</mml:mo></mml:mrow></mml:math 	no &2 nml:	mi 2p1
43	Electronic structure of (1e,1h) states of carbon nanotube quantum dots. Physical Review B, 2016, 93, .	3.2	2
44	Interedge backscattering in buried split-gate-defined graphene quantum point contacts. Physical Review B, 2016, 94, .	3.2	13
45	Nanoeducation for Industry and Society. Innovation, Technology and Knowledge Management, 2016, , 93-115.	0.8	Ο
46	Single-electron shell occupation and effectivegfactor in few-electron nanowire quantum dots. Physical Review B, 2015, 91, .	3.2	2
47	Multitip scanning gate microscopy for ballistic transport studies in systems with a two-dimensional electron gas. Physical Review B, 2015, 91, .	3.2	1
48	Charging graphene nanoribbon quantum dots. Physical Review B, 2015, 92, .	3.2	2
49	Spin–orbit interaction in bent carbon nanotubes: resonant spin transitions. Journal of Physics Condensed Matter, 2015, 27, 435301.	1.8	5
50	Imaging quantum-dot-confined electron density in transition to fractional quantum Hall regime. Semiconductor Science and Technology, 2015, 30, 015020.	2.0	3
51	Two-electronnâ^'pdouble quantum dots in carbon nanotubes. Physical Review B, 2015, 91, .	3.2	4
52	Conductance response of graphene nanoribbons and quantum point contacts in scanning gate measurements. Semiconductor Science and Technology, 2015, 30, 085003.	2.0	9
53	Valence band mixing versus higher harmonic generation in electric–dipole spin resonance. Semiconductor Science and Technology, 2015, 30, 055017.	2.0	0
54	Electron paths and double-slit interference in the scanning gate microscopy. New Journal of Physics, 2015, 17, 063003.	2.9	2

#	Article	IF	CITATIONS
55	Spin exchange energy for a pair of valence band holes in artificial molecules. Semiconductor Science and Technology, 2014, 29, 115022.	2.0	1
56	Conductance microscopy of quantum dots weakly or strongly coupled to the conducting channel. New Journal of Physics, 2014, 16, 053044.	2.9	3
57	Tight-binding simulations of electrically driven spin-valley transitions in carbon nanotube quantum dots. Physical Review B, 2014, 90, .	3.2	15
58	Imaging of double slit interference by scanning gate microscopy. Physical Review B, 2014, 90, .	3.2	7
59	Wave-function description of conductance mapping for a quantum Hall electron interferometer. Physical Review B, 2014, 89, .	3.2	7
60	Imaging localization of quasibound states in graphene antidots. Physical Review B, 2014, 90, .	3.2	1
61	Optical signatures of valence-band mixing in positive trion recombination spectra of double quantum dots. Physical Review B, 2014, 89, .	3.2	4
62	Interaction effects near constriction of a quasi two-dimensional electron system: an exact diagonalization study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1036-1041.	2.1	4
63	Spontaneous and resonant lifting of the spin blockade in nanowire quantum dots. Physical Review B, 2014, 89, .	3.2	3
64	Signatures of spin-orbit coupling in scanning gate conductance images of electron flow from quantum point contacts. Physical Review B, 2014, 90, .	3.2	14
65	Quantum ring conductance sensitivity to potential perturbation in an external magnetic field. Physical Review B, 2014, 89, .	3.2	1
66	Confined states in quantum dots defined within finite flakes of bilayer graphene: Coupling to the edge, ionization threshold, and valley degeneracy. Physical Review B, 2013, 88, .	3.2	22
67	Simulations of electric-dipole spin resonance for spin-orbit coupled quantum dots in the Overhauser field: Fractional resonances and selection rules. Physical Review B, 2013, 88, .	3.2	14
68	Spin current source based on a quantum point contact with local spin-orbit interaction. Applied Physics Letters, 2013, 103, .	3.3	14
69	Simulations of imaging of the local density of states by a charged probe technique for resonant cavities. Physical Review B, 2013, 88, .	3.2	23
70	Shape of recombination lines for exciton complexes in quantum dots with in-plane electric field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3179-3183.	2.1	0
71	SchrĶdinger-Poisson calculations for scanning gate microscopy of quantum rings based on etched two-dimensional electron gas. Physical Review B, 2013, 87, .	3.2	11
72	Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system. Journal of Physics Condensed Matter, 2013, 25, 155802.	1.8	2

#	Article	IF	CITATIONS
73	Charge density mapping of strongly-correlated few-electron two-dimensional quantum dots by the scanning probe technique. Journal of Physics Condensed Matter, 2013, 25, 335801.	1.8	8
74	Spin-polarization anisotropy in a narrow spin-orbit-coupled nanowire quantum dot. Physical Review B, 2013, 87, .	3.2	24
75	Negative trion emission spectrum in stacked quantum dots: External electric field and valence band mixing. Physical Review B, 2012, 85, .	3.2	7
76	Carrier-carrier inelastic scattering events for spatially separated electrons: Magnetic asymmetry and turnstile electron transfer. Physical Review B, 2012, 85, .	3.2	2
77	Resonant harmonic generation and collective spin rotations in electrically driven quantum dots. Physical Review B, 2012, 86, .	3.2	30
78	Multisubband transport and magnetic deflection of Fermi electron trajectories in three terminal junctions and rings. Journal of Physics Condensed Matter, 2012, 24, 085801.	1.8	7
79	Publisher's Note: Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings [Phys. Rev. B 85 , 165314 (2012)]. Physical Review B, 2012, 85, .	3.2	0
80	Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings. Physical Review B, 2012, 85, .	3.2	31
81	Scanning gate microscopy simulations for quantum rings: Effective potential of the tip and conductance maps. Physical Review B, 2011, 84, .	3.2	37
82	Electronic properties of a defected ring-shaped quantum dot array. Journal of Physics Condensed Matter, 2011, 23, 225801.	1.8	1
83	Singlet-triplet avoided crossings and effective <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>g</mml:mi></mml:mrow>factor versus spatial orientation of spin-orbit-coupled quantum dots. Physical Review B, 2011, 83, .</mml:math 	3.2	8
84	Fano resonances and electron spin transport through a two-dimensional spin-orbit-coupled quantum ring. Physical Review B, 2011, 84, .	3.2	19
85	Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field. Physical Review B, 2011, 83, .	3.2	29
86	Nanodevice for High Precision Readout of Electron Spin. Acta Physica Polonica A, 2011, 119, 651-653.	0.5	0
87	Spin accumulation and spin read out without magnetic field. Physical Review B, 2010, 82, .	3.2	10
88	Coupling of bonding and antibonding electron orbitals in double quantum dots by spin-orbit interaction. Physical Review B, 2010, 81, .	3.2	7
89	Signatures of antibonding hole ground states in exciton spectra of vertically coupled quantum dots in an electric field. Physical Review B, 2010, 81,	3.2	16
90	Magnetic forces and localized resonances in electron transfer through quantum rings. Journal of Physics Condensed Matter, 2010, 22, 465801.	1.8	8

#	Article	IF	CITATIONS
91	Magnetic forces and stationary electron flow in a three-terminal semiconductor quantum ring. Journal of Physics Condensed Matter, 2010, 22, 215801.	1.8	4
92	Tuning Fano resonances by magnetic forces for electron transport through a quantum wire side coupled to a quantum ring. Physical Review B, 2010, 82, .	3.2	9
93	Time-dependent configuration-interaction simulations of spin swap in spin-orbit-coupled double quantum dots. Physical Review B, 2010, 82, .	3.2	8
94	Selective suppression of Dresselhaus or Rashba spin-orbit coupling effects by the Zeeman interaction in quantum dots. Physical Review B, 2009, 79, .	3.2	16
95	Electron transfer through a multiterminal quantum ring: Magnetic forces and elastic scattering effects. Physical Review B, 2009, 80, .	3.2	13
96	Magnetic-Field Asymmetry of Electron Wave Packet Transmission in Bent Channels Capacitively Coupled to a Metal Gate. Physical Review Letters, 2009, 102, 066807.	7.8	13
97	Wave packet dynamics in semiconductor quantum rings of finite width. Physical Review B, 2009, 80, .	3.2	44
98	Gated combo nanodevice for sequential operations on single electron spin. Nanotechnology, 2009, 20, 065402.	2.6	6
99	Pinning of electron densities in quantum rings by defects: Symmetry constraints and distribution of persistent currents. Physical Review B, 2009, 79, .	3.2	13
100	Spin-orbit coupling effects in two-dimensional circular quantum rings: Elliptical deformation of confined electron density. Physical Review B, 2009, 80, .	3.2	40
101	Violation of Onsager symmetry for a ballistic channel Coulomb coupled to a quantum ring. Europhysics Letters, 2009, 87, 47002.	2.0	7
102	Few-electron artificial molecules formed by laterally coupled quantum rings. Physical Review B, 2008, 78, .	3.2	29
103	Charged coplanar semiconductor quantum rings: Magnetization and inter-ring electron-electron correlation. Physical Review B, 2008, 77, .	3.2	15
104	Manipulation of two-electron states by the electric field in stacked self-assembled dots. Journal of Physics Condensed Matter, 2008, 20, 395225.	1.8	4
105	Exciton spectra in vertical stacks of triple and quadruple quantum dots in an electric field. Physical Review B, 2008, 77, .	3.2	20
106	Correlated persistent currents in a stack of semiconductor quantum rings. Physical Review B, 2008, 77, .	3.2	9
107	Spin Rotations Induced by an Electron Running in Closed Trajectories in Gated Semiconductor Nanodevices. Physical Review Letters, 2008, 101, 216805.	7.8	33
108	Induced Quantum Dots and Wires: Electron Storage and Delivery. Physical Review Letters, 2008, 100, 126805.	7.8	22

#	ARTICLEM dot defined in a two-dimensional electron gas at a <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
109	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	3.2	15
110	Coupled Quantum Dots - Spatial Correlations between Interacting Carriers. Acta Physica Polonica A, 2008, 114, 1013-1039.	0.5	15
111	Signatures of lateral coupling of double quantum dots in the exciton photoluminescence spectrum. Physical Review B, 2007, 76, .	3.2	29
112	Electron correlations in charge coupled vertically stacked quantum rings. Physical Review B, 2007, 75,	3.2	12
113	Stark effect on the exciton spectra of vertically coupled quantum dots: Horizontal field orientation and nonaligned dots. Physical Review B, 2007, 75, .	3.2	38
114	Energy dissipation of electron solitons in a quantum well. Physical Review B, 2006, 73, .	3.2	13
115	Self-focusing of a quantum-well-confined electron wave packet interacting with a metal plate. Physica Status Solidi (B): Basic Research, 2006, 243, 2811-2818.	1.5	2
116	Stability of Charged Exciton States in Quantum Wires. Few-Body Systems, 2006, 38, 121-124.	1.5	3
117	Broken one-particle symmetry in few-electron coupled quantum dots. Physical Review B, 2006, 73, .	3.2	4
118	Magnetic-field-induced binding of few-electron systems in shallow quantum dots. Physical Review B, 2006, 74, .	3.2	2
119	Dependence of the vortex structure in quantum dots on the range of the inter-electron interaction. Physical Review B, 2006, 73, .	3.2	8
120	Coulomb-interaction driven anomaly in the Stark effect for an exciton in vertically coupled quantum dots. Journal of Luminescence, 2005, 112, 122-126.	3.1	9
121	Exact broken-symmetry states and Hartree–Fock solutions for quantum dots at high magnetic fields. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 252-256.	2.7	2
122	Lorentz-force–induced asymmetry in the Aharonov-Bohm effect in a three-terminal semiconductor quantum ring. Europhysics Letters, 2005, 70, 810-816.	2.0	29
123	Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots. Physical Review B, 2005, 71, .	3.2	58
124	Electron soliton in semiconductor nanostructures. Physical Review B, 2005, 72, .	3.2	15
125	Three electrons in laterally coupled quantum dots: Tunnel vs electrostatic coupling, ground-state symmetry, and interdot correlations. Physical Review B, 2005, 71, .	3.2	8
126	Few-electron eigenstates of concentric double quantum rings. Physical Review B, 2005, 72, .	3.2	68

#	Article	IF	CITATIONS
127	Relative stability of negative and positive trions in model symmetric quantum wires. Physical Review B, 2005, 71, .	3.2	24
128	LO-phonon-induced screening of electron–electron interaction in Dâ^'centres and quantum dots. Journal of Physics Condensed Matter, 2005, 17, 4489-4500.	1.8	69
129	Time-dependent simulations of electron transport through a quantum ring: Effect of the Lorentz force. Physical Review B, 2005, 72, .	3.2	50
130	A classical model for the magnetic field-induced Wigner crystallization in quantum dots. Journal of Physics Condensed Matter, 2004, 16, 1425-1437.	1.8	1
131	Re-entrant pinning of Wigner molecules in a magnetic field due to a Coulomb impurity. Europhysics Letters, 2004, 66, 701-707.	2.0	11
132	Exchange energy tuned by asymmetry in artificial molecules. Physical Review B, 2004, 70, .	3.2	35
133	Spatial ordering of charge and spin in quasi-one-dimensional Wigner molecules. Physical Review B, 2004, 70, .	3.2	49
134	Anisotropic quantum dots: Correspondence between quantum and classical Wigner molecules, parity symmetry, and broken-symmetry states. Physical Review B, 2004, 69, .	3.2	43
135	In-plane magnetic-field-induced Wigner crystallization in a two-electron quantum dot. Physical Review B, 2004, 70, .	3.2	7
136	Accuracy of the Hartree-Fock method for Wigner molecules at high magnetic fields. European Physical Journal D, 2004, 28, 373-380.	1.3	14
137	Electron spin and charge switching in a coupled quantum-dot–quantum ring system. Physical Review B, 2004, 70, .	3.2	32
138	Electrostatic quantum dots with designed shape of confinement potential. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 494-497.	2.7	41
139	Single-electron charging spectra: from natural to artificial atoms. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 523-529.	2.7	2
140	Configuration interaction study of the single-electron transport in the vertical gated quantum dot. Physica Status Solidi (B): Basic Research, 2003, 237, 289-295.	1.5	0
141	Modeling of electronic properties of electrostatic quantum dots. Physical Review B, 2003, 68, .	3.2	101
142	Magnetic-field-induced transformations of Wigner molecule symmetry in quantum dots. Physical Review B, 2003, 67, .	3.2	23
143	Four-electron quantum dot in a magnetic field. Physical Review B, 2003, 68, .	3.2	93
144	Artificial molecules in coupled and single quantum dots. Physical Review B, 2003, 67, .	3.2	29

#	Article	IF	CITATIONS
145	Effective interaction for charge carriers confined in quasi-one-dimensional nanostructures. Physical Review B, 2003, 68, .	3.2	78
146	Correlation effects in vertical gated quantum dots. Physical Review B, 2003, 67, .	3.2	17
147	Magnetic-field-induced phase transitions in Wigner molecules. Journal of Physics Condensed Matter, 2003, 15, 4189-4205.	1.8	17
148	Electron Pairs and Excitons in Quasi-One-Dimensional Nanostructures. Acta Physica Polonica A, 2003, 103, 567-572.	0.5	0
149	Effect of the repulsive core on the exciton spectrum in a quantum ring. Journal of Physics Condensed Matter, 2002, 14, 73-86.	1.8	17
150	Excitonic trions in single and double quantum dots. Physical Review B, 2002, 66, .	3.2	43
151	Modelling of confinement potentials in quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 15, 261-268.	2.7	85
152	Theoretical description of electronic properties of vertical gated quantum dots. Physical Review B, 2001, 64, .	3.2	43
153	Parity symmetry and energy spectrum of excitons in coupled self-assembled quantum dots. Physical Review B, 2001, 64, .	3.2	135
154	Induced-charge distribution in vertical quantum dots. , 2001, 4413, 129.		0
155	Electric- and magnetic-field-induced evolution of transport windows in a vertical quantum dot. Physical Review B, 2001, 65, .	3.2	9
156	Transport and Capacitance Spectroscopy of Quantum Dots. Acta Physica Polonica A, 2001, 100, 145-163.	0.5	0
157	Single-electron charging of self assembled quantum dots. Thin Solid Films, 2000, 367, 93-96.	1.8	3
158	MBE-grown gate-controlled quantum-dot nanostructure and its current–voltage characteristics. Thin Solid Films, 2000, 367, 97-100.	1.8	0
159	Quantum Coulomb blockade in gate-controlled quantum dots. Microelectronic Engineering, 2000, 51-52, 99-109.	2.4	3
160	Infrared optical versus transport spectroscopy for few-electron spherical quantum dots. Journal of Physics Condensed Matter, 2000, 12, 6837-6844.	1.8	0
161	Solution of the Poisson-Schrödinger problem for a single-electron transistor. Physical Review B, 2000, 61, 4461-4464.	3.2	30
162	Electron pair in a Gaussian confining potential. Physical Review B, 2000, 62, 4234-4237.	3.2	182

#	Article	IF	CITATIONS
163	Recombination energy for excitonic trions in quantum dots. Journal of Physics Condensed Matter, 2000, 12, 2453-2459.	1.8	21
164	Few-electron systems in quantum cylinders. Physical Review B, 2000, 61, 1971-1977.	3.2	30
165	Effect of the electron-phonon coupling on the ground state of aDâ^'center in a spherical quantum dot. Physical Review B, 1999, 60, 15558-15561.	3.2	14
166	Ground and excited states of few-electron systems in spherical quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 1999, 4, 1-10.	2.7	77
167	Electron–electron correlation in quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 1999, 5, 185-195.	2.7	56
168	Phonon resonances in optical spectra of donors in quantum wells. Physica B: Condensed Matter, 1999, 273-274, 947-950.	2.7	4
169	Many-electron artificial atoms. Physical Review B, 1999, 59, 13036-13042.	3.2	118
170	Few-Electron Artificial Atoms. Few-Body Systems, 1999, , 189-198.	0.2	2
171	Influence of Donor Impurity on Optical Transitions in Quantum Dots. Physica Status Solidi (B): Basic Research, 1998, 210, 677-682.	1.5	5
172	Energy spectrum of centres in spherical quantum dots. Journal of Physics Condensed Matter, 1998, 10, 7575-7586.	1.8	46
173	Theoretical Description of Shell Filling in Cylindrical Quantum Dots. Acta Physica Polonica A, 1998, 94, 555-559.	0.5	6
174	Ground and Excited States of Dˉ Centres in Semiconductor Quantum Dots. Materials Science Forum, 1997, 258-263, 1707-1712.	0.3	2