Seema Bhatnagar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9274398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Molecular Psychiatry, 2020, 25, 1068-1079.	7.9	123
2	The contribution of orexins to sex differences in the stress response. Brain Research, 2020, 1731, 145893.	2.2	40
3	Orexin signaling during social defeat stress influences subsequent social interaction behaviour and recognition memory. Behavioural Brain Research, 2019, 356, 444-452.	2.2	24
4	Age- and sex-dependent impact of repeated social stress on morphology of rat prefrontal cortex pyramidal neurons. Neurobiology of Stress, 2019, 10, 100165.	4.0	19
5	Neurochemically distinct circuitry regulates locus coeruleus activity during female social stress depending on coping style. Brain Structure and Function, 2019, 224, 1429-1446.	2.3	15
6	Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity. Neuroscience, 2018, 381, 11-21.	2.3	19
7	Sex differences in circuits activated by corticotropin releasing factor in rats. Hormones and Behavior, 2018, 97, 145-153.	2.1	43
8	A Retrospective Study of Predictors of Return to Duty versus Medical Retirement in an Active Duty Military Population with Blast-Related Mild Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 991-1002.	3.4	20
9	Orexins and stress. Frontiers in Neuroendocrinology, 2018, 51, 132-145.	5.2	80
10	Orexin 2 receptor regulation of the hypothalamic–pituitary–adrenal (HPA) response to acute and repeated stress. Neuroscience, 2017, 348, 313-323.	2.3	47
11	Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Translational Psychiatry, 2017, 7, e1160-e1160.	4.8	96
12	Orexins Mediate Sex Differences in the Stress Response and in Cognitive Flexibility. Biological Psychiatry, 2017, 81, 683-692.	1.3	100
13	MicroRNAs as biomarkers of resilience or vulnerability to stress. Neuroscience, 2015, 305, 36-48.	2.3	89
14	Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Frontiers in Behavioral Neuroscience, 2014, 8, 73.	2.0	165
15	Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiology and Behavior, 2014, 130, 182-190.	2.1	70
16	Social defeat induces changes in histone acetylation and expression of histone modifying enzymes in the ventral hippocampus, prefrontal cortex, and dorsal raphe nucleus. Neuroscience, 2014, 264, 88-98.	2.3	61
17	Effects of Chronic Sleep Fragmentation on Wake-Active Neurons and the Hypercapnic Arousal Response. Sleep, 2014, 37, 51-64.	1.1	60
18	Social Stress Engages Opioid Regulation of Locus Coeruleus Norepinephrine Neurons and Induces a State of Cellular and Physical Opiate Dependence. Neuropsychopharmacology, 2013, 38, 1833-1843.	5.4	59

SEEMA BHATNAGAR

#	Article	IF	CITATIONS
19	Short-term and long-term effects of repeated social defeat during adolescence or adulthood in female rats. Neuroscience, 2013, 249, 63-73.	2.3	59
20	Enkephalin and dynorphin mRNA expression are associated with resilience or vulnerability to chronic social defeat stress. Physiology and Behavior, 2013, 122, 237-245.	2.1	51
21	Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress. Physiology and Behavior, 2013, 122, 228-236.	2.1	29
22	Putative genes mediating the effects of orexins in the posterior paraventricular thalamus on neuroendocrine and behavioral adaptations to repeated stress. Brain Research Bulletin, 2012, 89, 203-210.	3.0	20
23	Depressive and cardiovascular disease comorbidity in a rat model of social stress: a putative role for corticotropin-releasing factor. Psychopharmacology, 2012, 222, 325-336.	3.1	66
24	Social isolation in adolescence alters behaviors in the forced swim and sucrose preference tests in female but not in male rats. Physiology and Behavior, 2012, 105, 269-275.	2.1	87
25	Lack of elevations in glucocorticoids correlates with dysphoria-like behavior after repeated social defeat. Physiology and Behavior, 2012, 105, 958-965.	2.1	30
26	Early Adolescence as a Critical Window During Which Social Stress Distinctly Alters Behavior and Brain Norepinephrine Activity. Neuropsychopharmacology, 2011, 36, 896-909.	5.4	91
27	The basolateral amygdala regulates adaptation to stress via β-adrenergic receptor-mediated reductions in phosphorylated extracellular signal-regulated kinase. Neuroscience, 2011, 178, 108-122.	2.3	34
28	Enduring and sex-specific effects of adolescent social isolation in rats on adult stress reactivity. Brain Research, 2010, 1343, 83-92.	2.2	168
29	Inescapable but not escapable stress leads to increased struggling behavior and basolateral amygdala c-fos gene expression in response to subsequent novel stress challenge. Neuroscience, 2010, 170, 138-148.	2.3	24
30	Habituation to repeated stress: Get used to it. Neurobiology of Learning and Memory, 2009, 92, 215-224.	1.9	390
31	Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory, 2009, 92, 135-138.	1.9	1,167
32	Sex-specific susceptibility to cocaine in rats with a history of prenatal stress. Physiology and Behavior, 2009, 97, 270-277.	2.1	54
33	Struggling behavior during restraint is regulated by stress experience. Behavioural Brain Research, 2008, 191, 219-226.	2.2	70
34	The physical context of previous stress exposure modifies hypothalamic–pituitary–adrenal responses to a subsequent homotypic stress. Hormones and Behavior, 2007, 51, 95-103.	2.1	51
35	Intracerebroventricular Administration of Corticotrophin-Releasing Hormone Receptor Antagonists Produces Different Effects on Hypothalamic Pituitary Adrenal Responses to Novel Restraint Depending on the Stress History of the Animal. Journal of Neuroendocrinology, 2007, 19, 198-207.	2.6	10
36	Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic–pituitary–adrenal activity and anxiety-related behavior regardless of prior stress experience. Brain Research, 2007, 1186, 212-223.	2.2	77

SEEMA BHATNAGAR

#	Article	IF	CITATIONS
37	Glucocorticoids, chronic stress, and obesity. Progress in Brain Research, 2006, 153, 75-105.	1.4	164
38	Changes in Hypothalamic-Pituitary-Adrenal Function, Body Temperature, Body Weight and Food Intake with Repeated Social Stress Exposure in Rats. Journal of Neuroendocrinology, 2006, 18, 13-24.	2.6	172
39	Prenatal stress differentially affects habituation of corticosterone responses to repeated stress in adult male and female rats. Hormones and Behavior, 2005, 47, 430-438.	2.1	83
40	Regulation of Chronic Stress-Induced Changes in Hypothalamic-Pituitary-Adrenal Activity by the Basolateral Amygdala. Annals of the New York Academy of Sciences, 2004, 1032, 315-319.	3.8	67
41	Deletion of the 5-HT3 receptor differentially affects behavior of males and females in the Porsolt forced swim and defensive withdrawal tests. Behavioural Brain Research, 2004, 153, 527-535.	2.2	75
42	Changes in anxiety-related behaviors and hypothalamic–pituitary–adrenal activity in mice lacking the 5-HT-3A receptor. Physiology and Behavior, 2004, 81, 545-555.	2.1	88
43	Chronic stress alters behavior in the conditioned defensive burying test: role of the posterior paraventricular thalamus. Pharmacology Biochemistry and Behavior, 2003, 76, 343-349.	2.9	41
44	Effects of maternal separation on behavioural sensitization produced by repeated cocaine administration in adulthood. Brain Research, 2003, 960, 42-47.	2.2	51
45	Facilitation of hypothalamic–pituitary–adrenal responses to novel stress following repeated social stress using the resident/intruder paradigm. Hormones and Behavior, 2003, 43, 158-165.	2.1	124
46	Negative feedback functions in chronically stressed rats: role of the posterior paraventricular thalamus. Physiology and Behavior, 2003, 78, 365-373.	2.1	74
47	A spoonful of sugar: feedback signals of energy stores and corticosterone regulate responses to chronic stress. Physiology and Behavior, 2003, 79, 3-12.	2.1	106
48	Chronic stress and obesity: A new view of "comfort food― Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11696-11701.	7.1	1,126
49	Lesions of the Posterior Paraventricular Thalamus Block Habituation of Hypothalamic-Pituitary-Adrenal Responses to Repeated Restraint. Journal of Neuroendocrinology, 2002, 14, 403-410.	2.6	198
50	A Cholecystokinin-Mediated Pathway to the Paraventricular Thalamus Is Recruited in Chronically Stressed Rats and Regulates Hypothalamic-Pituitary-Adrenal Function. Journal of Neuroscience, 2000, 20, 5564-5573.	3.6	138
51	Voluntary Sucrose Ingestion, Like Corticosterone Replacement, Prevents the Metabolic Deficits of Adrenalectomy. Journal of Neuroendocrinology, 2000, 12, 461-470.	2.6	102
52	Disruption of Arcuate/Paraventricular Nucleus Connections Changes Body Energy Balance and Response to Acute Stress. Journal of Neuroscience, 2000, 20, 6707-6713.	3.6	76
53	The paraventricular nucleus of the thalamus alters rhythms in core temperature and energy balance in a state-dependent manner. Brain Research, 1999, 851, 66-75.	2.2	118
54	The effects of prior chronic stress on cardiovascular responses to acute restraint and formalin injection. Brain Research, 1998, 797, 313-320.	2.2	54

SEEMA BHATNAGAR

#	Article	lF	CITATIONS
55	Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience, 1998, 84, 1025-1039.	2.3	463
56	The Effects of Intrahippocampal Scopolamine Infusions on Anxiety in Rats as Measured by the Black–White Box Test. Brain Research Bulletin, 1998, 45, 89-93.	3.0	65
57	Hippocampal cholinergic blockade enhances hypothalamic-pituitary-adrenal responses to stress. Brain Research, 1997, 766, 244-248.	2.2	45
58	Muscarinic antagonists are anxiogenic in rats tested in the black-white box. Pharmacology Biochemistry and Behavior, 1996, 54, 57-63.	2.9	90
59	Plaque-forming cell responses and antibody titers following injection of sheep red blood cells in nonstressed, acute, and/or chronically stressed handled and nonhandled animals. , 1996, 29, 171-181.		24
60	Hypothalamicâ€Pituitaryâ€Adrenal Function in Chronic Intermittently Coldâ€Stressed Neonatally Handled and Non Handled Rats. Journal of Neuroendocrinology, 1995, 7, 97-108.	2.6	113
61	Effects of chronic intermittent cold stress on pituitary adrenocortical and sympathetic adrenomedullary functioning. Physiology and Behavior, 1995, 57, 633-639.	2.1	56
62	Molecular basis for the development of individual differences in the hypothalamic-pituitary-adrenal stress response. Cellular and Molecular Neurobiology, 1993, 13, 321-347.	3.3	120
63	The effects of prostaglandin E2 injected into the paraventricular nucleus of the hypothalamus on brown adipose tissue thermogenesis in spontaneously hypertensive rats. Brain Research, 1993, 613, 285-287.	2.2	14
64	Individual Differences in the Hypothalamic-Pituitary-Adrenal Stress Response and the Hypothalamic CRF System. Annals of the New York Academy of Sciences, 1993, 697, 70-85.	3.8	104
65	Postnatal handling attenuates certain neuroendocrine, anatomical, and cognitive dysfunctions associated with aging in female rats. Neurobiology of Aging, 1991, 12, 31-38.	3.1	234
66	The effects of neonatal handling on the development of the adrenocortical response to stress: Implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology, 1991, 16, 85-103.	2.7	348
67	Cellular mechanisms underlying the development and expression of individual differences in the hypothalamic-pituitary-adrenal stress response. Journal of Steroid Biochemistry and Molecular Biology, 1991, 39, 265-274.	2.5	81
68	Glucocorticoid receptors in brain and pituitary of the lactating rat. Physiology and Behavior, 1989, 45, 209-212.	2.1	39
69	Stress-induced occupancy and translocation of hippocampal glucocorticoid receptors. Brain Research, 1988, 445, 198-203.	2.2	83
70	Effect of Neonatal Handling on Age-Related Impairments Associated with the Hippocampus. Science, 1988, 239, 766-768.	12.6	1,027