
Hanu R Pappu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9274279/publications.pdf Version: 2024-02-01

21

#	Article	IF	CITATIONS
1	Nanotechnology for Plant Disease Management. Agronomy, 2018, 8, 285.	3.0	256
2	Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race. Viruses, 2017, 9, 256.	3.3	80
3	Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses. Journal of Virology, 2018, 92, .	3.4	79
4	Phenotypic and Etiological Differences Between Psyllid Yellows and Zebra Chip Diseases of Potato. American Journal of Potato Research, 2010, 87, 41-49.	0.9	77
5	A novel fungal effector from <i>Puccinia graminis</i> suppressing <scp>RNA</scp> silencing and plant defense responses. New Phytologist, 2019, 222, 1561-1572.	7.3	59
6	Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development. PLoS ONE, 2019, 14, e0223765.	2.5	50
7	ICTV Virus Taxonomy Profile: Caulimoviridae. Journal of General Virology, 2020, 101, 1025-1026.	2.9	49
8	Use of Electrical Penetration Graph Technology to Examine Transmission of â€~Candidatus Liberibacter solanacearum' to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera:) Tj ETQq0	0 Q .18gBT /	Ov ei lock 10
9	Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to to tomato spotted wilt virus. Virus Research, 2016, 211, 151-158.	2.2	39
10	A new and distinct species in the genus Caulimovirus exists as an endogenous plant pararetroviral sequence in its host, Dahlia variabilis. Virology, 2008, 376, 253-257.	2.4	38
11	Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Research, 2017, 238, 13-23.	2.2	38
12	Small RNA profiles of wild-type and silencing suppressor-deficient tomato spotted wilt virus infected Nicotiana benthamiana. Virus Research, 2015, 208, 30-38.	2.2	34
13	The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca. Frontiers in Plant Science, 2016, 7, 1349.	3.6	31
14	In Vivo Localization of Iris yellow spot Tospovirus (Bunyaviridae)-Encoded Proteins and Identification of Interacting Regions of Nucleocapsid and Movement Proteins. PLoS ONE, 2015, 10, e0118973.	2.5	27
15	Comparative analysis of virus-specific small RNA profiles of three biologically distinct strains of Potato virus Y in infected potato (Solanum tuberosum) cv. Russet Burbank. Virus Research, 2014, 191, 153-160.	2.2	23
16	Virus and Viroid-Derived Small RNAs as Modulators of Host Gene Expression: Molecular Insights Into Pathogenesis. Frontiers in Microbiology, 2020, 11, 614231.	3.5	22
17	Movement and nucleocapsid proteins coded by two tospovirus species interact through multiple binding regions in mixed infections. Virology, 2015, 478, 137-147.	2.4	21
	Comparison of small RNA profiles in Nicotiana benthamiana and Solanum hypopersisum infected by		

Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Research, 2.2 2016, 211, 38-45.

Hanu R Pappu

#	Article	IF	CITATIONS
19	Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA. Viruses, 2021, 13, 662.	3.3	17
20	Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors. Pathogens, 2021, 10, 320.	2.8	16
21	The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome. Virology Journal, 2017, 14, 129.	3.4	15
22	Deriving Economic Models for Pea Aphid (Hemiptera: Aphididae) as a Direct-Pest and a Virus-Vector on Commercial Lentils. Journal of Economic Entomology, 2018, 111, 2225-2232.	1.8	15
23	In silico Prediction and Validations of Domains Involved in Gossypium hirsutum SnRK1 Protein Interaction With Cotton Leaf Curl Multan Betasatellite Encoded I²C1. Frontiers in Plant Science, 2019, 10, 656.	3.6	15
24	Identification and localization of Tospovirus genus-wide conserved residues in 3D models of the nucleocapsid and the silencing suppressor proteins. Virology Journal, 2019, 16, 7.	3.4	14
25	<i>Iris yellow spot virus</i> on Shallot and Onion in France. Plant Health Progress, 2008, 9, .	1.4	14
26	Increasing Outbreaks and Impact of Iris yellow spot virus in Bulb and Seed Onion Crops in the Imperial and Antelope Valleys of California. Plant Health Progress, 2007, 8, 50.	1.4	10
27	βC1, pathogenicity determinant encoded by Cotton leaf curl Multan betasatellite, interacts with calmodulin-like protein 11 (Ch-CML11) inÂGossypium hirsutum. PLoS ONE, 2019, 14, e0225876.	2.5	10
28	A loopâ€mediated isothermal amplification assay for the detection of <scp><i>Dahlia mosaic caulimovirus</i></scp> in Dahlia (<scp><i>Dahlia variabilis</i></scp>). Annals of Applied Biology, 2020, 176, 203-209.	2.5	10
29	Characterization of <i>Iris yellow spot virus</i> from Onion in Arizona. Plant Health Progress, 2008, 9, .	1.4	9
30	Putative Auxin and Light Responsive Promoter Elements From the Tomato spotted wilt tospovirus Genome, When Expressed as cDNA, Are Functional in Arabidopsis. Frontiers in Plant Science, 2019, 10, 804.	3.6	9
31	The Tomato spotted wilt virus (TSWV) Genome is Differentially Targeted in TSWV-Infected Tomato (Solanum lycopersicum) with or without Sw-5 Gene. Viruses, 2020, 12, 363.	3.3	9
32	Identification and Functional Analysis of Four RNA Silencing Suppressors in Begomovirus Croton Yellow Vein Mosaic Virus. Frontiers in Plant Science, 2021, 12, 768800.	3.6	9
33	Global analysis of population structure, spatial and temporal dynamics of genetic diversity, and evolutionary lineages of Iris yellow spot virus (Tospovirus: Bunyaviridae). Gene, 2014, 547, 111-118.	2.2	8
34	Effect of Potato Virus S Infection on Late Blight Resistance in Potato. American Journal of Potato Research, 2014, 91, 642-648.	0.9	8
35	A survey on the infection of Onion yellow dwarf virus and Iris yellow spot tospovirus in seed and bulb productions systems of onion in Calabria, Italy. European Journal of Plant Pathology, 2020, 156, 767-778.	1.7	7
36	Identification and Characterization of Plant-Interacting Targets of Tomato Spotted Wilt Virus Silencing Suppressor. Pathogens, 2021, 10, 27.	2.8	7

Hanu R Pappu

#	Article	IF	CITATIONS
37	Complete Genomic Characterization of Plum bark necrosis stem pitting–associated virus Infecting Sweet Cherry in China. Genome Announcements, 2016, 4, .	0.8	6
38	Sequence characterization, molecular phylogeny reconstruction and recombination analysis of the large RNA of Tomato spotted wilt virus (Tospovirus: Bunyaviridae) from the United States. BMC Research Notes, 2016, 9, 200.	1.4	6
39	Emerging Molecular Links Between Plant Photomorphogenesis and Virus Resistance. Frontiers in Plant Science, 2020, 11, 920.	3.6	6
40	Evaluation of the National Plant Germplasm System's Garlic Collection for Seven Viruses. Plant Health Progress, 2008, 9, .	1.4	5
41	In memoriam – Richard M. Elliott (1954–2015). Journal of General Virology, 2015, 96, 1975-1978.	2.9	4
42	Evaluation of Lisianthus as an Indicator Host for <i>Iris yellow spot virus</i> . Plant Disease, 2011, 95, 1520-1527.	1.4	3
43	Structure and Genome Organization of <i>Cherry Virus A</i> (<i>Capillovirus, Betaflexiviridae</i>) from China Using Small RNA Sequencing. Genome Announcements, 2016, 4, .	0.8	3
44	Whole-Genome Characterization of Prunus necrotic ringspot virus Infecting Sweet Cherry in China. Genome Announcements, 2018, 6, .	0.8	3
45	Complete genome characterization and population dynamics of potato virus Y-NTN strain from India. VirusDisease, 2019, 30, 252-260.	2.0	3
46	Viruses Without Borders: Global Analysis of the Population Structure, Haplotype Distribution, and Evolutionary Pattern of Iris Yellow Spot Orthotospovirus (Family Tospoviridae, Genus) Tj ETQq0 0 0 rgBT /Overlo	ck 31.03 Tf 50) 3377 Td (Or
47	Genetic diversity in potato mop-top virus populations in the United States and a global analysis of the PMTV genome. European Journal of Plant Pathology, 2020, 156, 333-342.	1.7	2
48	Susceptibility of <i>Arabidopsis</i> Ecotypes to Infection by <i>Iris yellow spot virus</i> . Plant Health Progress, 2012, 13, .	1.4	2
49	Phylogenetics of tobacco rattle virus isolates from potato (Solanum tuberosum L.) in the USA: a multi-gene approach to evolutionary lineage. Virus Genes, 2022, 58, 42-52.	1.6	2
50	World Society for Virology first international conference: Tackling global virus epidemics. Virology, 2022, 566, 114-121.	2.4	2
51	Dahlia Mosaic-Associated Caulimoviruses in Dahlia in Lithuania. Plant Health Progress, 2009, 10, 49.	1.4	1
52	Genome Sequence of Sclerotinia sclerotiorum Hypovirulence-Associated DNA Virus 1 Found in the Fungus Penicillium olsonii Isolated from Washington State, USA. Microbiology Resource Announcements, 2022, , e0001922.	0.6	1
53	Molecular characterization of the 3′ end of Citrus tristeza virus genome from Oman. Indian Phytopathology, 2021, 74, 1147-1150.	1.2	0