
Y Tony Ip

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9274243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toll-9 interacts with Toll-1 to mediate a feedback loop during apoptosis-induced proliferation in Drosophila. Cell Reports, 2022, 39, 110817.	6.4	7
2	Hinfp is a guardian of the somatic genome by repressing transposable elements. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
3	Lats1/2 Sustain Intestinal Stem Cells and Wnt Activation through TEAD-Dependent and Independent Transcription. Cell Stem Cell, 2020, 26, 675-692.e8.	11.1	109
4	The Snakeskin-Mesh Complex of Smooth Septate Junction Restricts Yorkie to Regulate Intestinal Homeostasis in Drosophila. Stem Cell Reports, 2020, 14, 828-844.	4.8	19
5	Oncogenic Pathways and Loss of the Rab11 GTPase Synergize To Alter Metabolism in Drosophila. Genetics, 2019, 212, 1227-1239.	2.9	12
6	Recycling Endosomes in Mature Epithelia Restrain Tumorigenic Signaling. Cancer Research, 2019, 79, 4099-4112.	0.9	26
7	Toll family members bind multiple SpÃæle proteins and activate antimicrobial peptide gene expression in Drosophila. Journal of Biological Chemistry, 2019, 294, 10172-10181.	3.4	58
8	The Misshapen subfamily of Ste20 kinases regulate proliferation in the aging mammalian intestinal epithelium. Journal of Cellular Physiology, 2019, 234, 21925-21936.	4.1	8
9	YAP/TAZ Activation Drives Uveal Melanoma Initiation and Progression. Cell Reports, 2019, 29, 3200-3211.e4.	6.4	45
10	Ingestion of Food Particles Regulates the Mechanosensing Misshapen-Yorkie Pathway in Drosophila Intestinal Growth. Developmental Cell, 2018, 45, 433-449.e6.	7.0	45
11	YAP/TAZ and Hedgehog Coordinate Growth and Patterning in Gastrointestinal Mesenchyme. Developmental Cell, 2017, 43, 35-47.e4.	7.0	55
12	How Toll Met Hippo. Developmental Cell, 2016, 36, 246-248.	7.0	0
13	Overlapping functions of the MAP4K family kinases Hppy and Msn in Hippo signaling. Cell Discovery, 2015, 1, 15038.	6.7	46
14	More Frequent than Desired: Midgut Stem Cell Somatic Mutations. Cell Stem Cell, 2015, 17, 639-640.	11.1	2
15	Bunched and Madm Function Downstream of Tuberous Sclerosis Complex to Regulate the Growth of Intestinal Stem Cells in Drosophila. Stem Cell Reviews and Reports, 2015, 11, 813-825.	5.6	5
16	Enteroendocrine Cells Support Intestinal Stem-Cell-Mediated Homeostasis in Drosophila. Cell Reports, 2014, 9, 32-39.	6.4	120
17	Retromer Promotes Immune Quiescence by Suppressing SpÃæleâ€Toll Pathway in <i>Drosophila</i> . Journal of Cellular Physiology, 2014, 229, 512-520.	4.1	9
18	The Conserved Misshapen-Warts-Yorkie Pathway Acts in Enteroblasts to Regulate Intestinal Stem Cells in Drosophila. Developmental Cell, 2014, 31, 291-304.	7.0	112

Y Tony Ip

#	Article	IF	CITATIONS
19	Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in <i>Drosophila</i> . Development (Cambridge), 2014, 141, 2621-2632.	2.5	14
20	Gudu, an Armadillo repeat-containing protein, is required for spermatogenesis in Drosophila. Gene, 2013, 531, 294-300.	2.2	32
21	Drosophila Myc integrates multiple signaling pathways to regulate intestinal stem cell proliferation during midgut regeneration. Cell Research, 2013, 23, 1133-1146.	12.0	51
22	Tuberous sclerosis complex and Myc coordinate the growth and division of <i>Drosophila</i> intestinal stem cells. Journal of Cell Biology, 2011, 193, 695-710.	5.2	87
23	Smad inhibition by the Ste20 kinase Misshapen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11127-11132.	7.1	47
24	Functional analysis of <i>Toll</i> â€related genes in <i>Drosophila</i> . Development Growth and Differentiation, 2010, 52, 771-783.	1.5	55
25	Hippo signaling regulates <i>Drosophila</i> intestine stem cell proliferation through multiple pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21064-21069.	7.1	283
26	Heterodimers of NF-κB transcription factors DIF and Relish regulate antimicrobial peptide genes in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14715-14720.	7.1	79
27	Pathogenic stimulation of intestinal stem cell response in drosophila. Journal of Cellular Physiology, 2009, 220, 664-671.	4.1	113
28	Tissue Damage-Induced Intestinal Stem Cell Division in Drosophila. Cell Stem Cell, 2009, 4, 49-61.	11.1	454
29	Toll and IMD Pathways Synergistically Activate an Innate Immune Response in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 2007, 27, 4578-4588.	2.3	304
30	Identification of phosphatases for Smad in the BMP/DPP pathway. Genes and Development, 2006, 20, 648-653.	5.9	111
31	Mesoderm Formation in the Drosophila Embryo. , 2006, , 28-37.		0
32	Drosophila innate immunity goes viral. Nature Immunology, 2005, 6, 863-864.	14.5	14
33	Helicase89B is a Mot1p/BTAF1 homologue that mediates an antimicrobial response in Drosophila. EMBO Reports, 2005, 6, 1088-1094.	4.5	26
34	Drosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo. Development (Cambridge), 2005, 132, 3419-3429.	2.5	71
35	Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends in Immunology, 2005, 26, 193-198.	6.8	229
36	Multimerization and interaction of Toll and Spatzle in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9369-9374.	7.1	113

Y Tony Ip

#	Article	IF	CITATIONS
37	Toll and Toll-9 in <i>Drosophila</i> innate immune response. Journal of Endotoxin Research, 2004, 10, 261-268.	2.5	30
38	Worniu, a Snail family zinc-finger protein, is required for brain development inDrosophila. Developmental Dynamics, 2004, 231, 379-386.	1.8	29
39	Hemolymph-dependent and -independent responses inDrosophila immune tissue. Journal of Cellular Biochemistry, 2004, 92, 849-863.	2.6	46
40	The repressor function of Snail is required for Drosophila gastrulation and is not replaceable by Escargot or Worniu. Developmental Biology, 2004, 269, 411-420.	2.0	40
41	Cell movements during gastrulation: Snail dependent and independent pathways. Current Opinion in Genetics and Development, 2002, 12, 423-429.	3.3	58
42	The Snail protein family regulates neuroblast expression of <i>inscuteable</i> and <i>string</i> , genes involved in asymmetry and cell division in <i>Drosophila</i> . Development (Cambridge), 2001, 128, 4757-4767.	2.5	69
43	Interaction and Specificity of Rel-related Proteins in Regulating Drosophila Immunity Gene Expression. Journal of Biological Chemistry, 1999, 274, 21355-21361.	3.4	100
44	The mesoderm determinant Snail collaborates with related zinc-finger proteins to control Drosophila neurogenesis. EMBO Journal, 1999, 18, 6426-6438.	7.8	88