
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9273970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology, 2010, 10, 787-796.	22.7	1,611
2	Nanoparticles target distinct dendritic cell populations according to their size. European Journal of Immunology, 2008, 38, 1404-1413.	2.9	1,093
3	The Influence of Antigen Organization on B Cell Responsiveness. Science, 1993, 262, 1448-1451.	12.6	676
4	ON IMMUNOLOGICAL MEMORY. Annual Review of Immunology, 1996, 14, 333-367.	21.8	439
5	NEUTRALIZING ANTIVIRAL B CELL RESPONSES. Annual Review of Immunology, 1997, 15, 235-270.	21.8	432
6	Major findings and recent advances in virus–like particle (VLP)-based vaccines. Seminars in Immunology, 2017, 34, 123-132.	5.6	375
7	Influenza A Vaccine Based on the Extracellular Domain of M2: Weak Protection Mediated via Antibody-Dependent NK Cell Activity. Journal of Immunology, 2004, 172, 5598-5605.	0.8	364
8	Virus-specific major MHC class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. European Journal of Immunology, 1998, 28, 390-400.	2.9	360
9	The coming of age of virus-like particle vaccines. Biological Chemistry, 2008, 389, 521-536.	2.5	333
10	Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Scientific Reports, 2016, 6, 19234.	3.3	310
11	Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. Lancet, The, 2008, 371, 821-827.	13.7	273
12	Nonmethylated CG Motifs Packaged into Virus-Like Particles Induce Protective Cytotoxic T Cell Responses in the Absence of Systemic Side Effects. Journal of Immunology, 2004, 172, 1777-1785.	0.8	271
13	A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. European Journal of Immunology, 2005, 35, 2031-2040.	2.9	259
14	Nrf2 is essential for cholesterol crystalâ€induced inflammasome activation and exacerbation of atherosclerosis. European Journal of Immunology, 2011, 41, 2040-2051.	2.9	255
15	A Vaccine against Nicotine for Smoking Cessation: A Randomized Controlled Trial. PLoS ONE, 2008, 3, e2547.	2.5	251
16	The Role of Antibody Concentration and Avidity in Antiviral Protection. Science, 1997, 276, 2024-2027.	12.6	250
17	TLR9 Signaling in B Cells Determines Class Switch Recombination to IgG2a. Journal of Immunology, 2007, 178, 2415-2420.	0.8	247
18	Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Annals of Medicine, 2022, 54, 524-540.	3.8	225

#	Article	IF	CITATIONS
19	A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine, 2002, 20, 3104-3112.	3.8	207
20	Selective Utilization of Toll-like Receptor and MyD88 Signaling in B Cells for Enhancement of the Antiviral Germinal Center Response. Immunity, 2011, 34, 375-384.	14.3	206
21	A vaccine for hypertension based on virus-like particles: preclinical efficacy and phase I safety and immunogenicity. Journal of Hypertension, 2007, 25, 63-72.	0.5	196
22	Use of Aâ€ŧype CpG oligodeoxynucleotides as an adjuvant in allergenâ€specific immunotherapy in humans: a phase I/IIa clinical trial. Clinical and Experimental Allergy, 2009, 39, 562-570.	2.9	194
23	Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. Journal of Allergy and Clinical Immunology, 2006, 117, 1470-1476.	2.9	190
24	The influence of virus structure on antibody responses and virus serotype formation. Trends in Immunology, 1996, 17, 553-558.	7.5	186
25	Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. European Journal of Immunology, 2002, 32, 3305-3314.	2.9	185
26	Induction of long-lived germinal centers associated with persisting antigen after viral infection Journal of Experimental Medicine, 1996, 183, 2259-2269.	8.5	178
27	Nanoâ€particle vaccination combined with <scp>TLR</scp> â€7 and â€9 ligands triggers memory and effector <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell responses in melanoma patients. European Journal of Immunology, 2012, 42, 3049-3061.	2.9	173
28	T helper cell-independent neutralizing B cell response against vesicular stomatitis virus: Role of antigen patterns in B cell induction?. European Journal of Immunology, 1995, 25, 3445-3451.	2.9	172
29	Isolation of human monoclonal antibodies by mammalian cell display. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14336-14341.	7.1	167
30	The Second-Generation Active AÂ Immunotherapy CAD106 Reduces Amyloid Accumulation in APP Transgenic Mice While Minimizing Potential Side Effects. Journal of Neuroscience, 2011, 31, 9323-9331.	3.6	167
31	Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18055-18060.	7.1	166
32	Versatile Virus-Like Particle Carrier for Epitope Based Vaccines. PLoS ONE, 2010, 5, e9809.	2.5	161
33	Role of Toll-like receptors in costimulating cytotoxic T cell responses. European Journal of Immunology, 2003, 33, 1465-1470.	2.9	156
34	The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. Journal of Allergy and Clinical Immunology, 2013, 131, 866-874.	2.9	155
35	Dendritic cells process exogenous viral proteins and virusâ€like particles for class I presentation to CD8 ⁺ cytotoxic T lymphocytes. European Journal of Immunology, 1996, 26, 2595-2600.	2.9	144
36	Innate Immunity Mediates Follicular Transport of Particulate but Not Soluble Protein Antigen. Journal of Immunology, 2012, 188, 3724-3733.	0.8	144

#	Article	IF	CITATIONS
37	On Iron Metabolism and Its Regulation. International Journal of Molecular Sciences, 2021, 22, 4591.	4.1	141
38	Efficient induction of mucosal and systemic immune responses by virusâ€like particles administered intranasally: implications for vaccine design. European Journal of Immunology, 2008, 38, 114-126.	2.9	136
39	Memory and Effector CD8 T-cell Responses After Nanoparticle Vaccination of Melanoma Patients. Journal of Immunotherapy, 2010, 33, 848-858.	2.4	131
40	Protection against immunopathological consequences of a viral infection by activated but not resting cytotoxic T cells: T cell memory without "memory T cells"?. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 640-645.	7.1	126
41	Assessment of clinical efficacy of CYT003â€QbG10 in patients with allergic rhinoconjunctivitis: a phase IIb study. Clinical and Experimental Allergy, 2011, 41, 1305-1312.	2.9	125
42	Critical Role for Activation of Antigen-Presenting Cells in Priming of Cytotoxic T Cell Responses After Vaccination with Virus-Like Particles. Journal of Immunology, 2002, 168, 2880-2886.	0.8	116
43	Displaying Fel d1 on virus-like particles prevents reactogenicity despite greatly enhanced immunogenicity: a novel therapy for cat allergy. Journal of Experimental Medicine, 2009, 206, 1941-1955.	8.5	114
44	Harnessing Nanoparticles for Immunomodulation and Vaccines. Vaccines, 2017, 5, 6.	4.4	113
45	Interaction of Viral Capsid-Derived Virus-Like Particles (VLPs) with the Innate Immune System. Vaccines, 2018, 6, 37.	4.4	113
46	Immunodrugs: Therapeutic VLP-Based Vaccines for Chronic Diseases. Annual Review of Pharmacology and Toxicology, 2009, 49, 303-326.	9.4	111
47	Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nature Reviews Drug Discovery, 2004, 3, 81-88.	46.4	106
48	Class II major histocompatibility complex-restricted T cell function in CD4-deficient mice. European Journal of Immunology, 1994, 24, 2213-2218.	2.9	104
49	A Virus-Like Particle-Based Vaccine Selectively Targeting Soluble TNF-α Protects from Arthritis without Inducing Reactivation of Latent Tuberculosis. Journal of Immunology, 2007, 178, 7450-7457.	0.8	104
50	Cutting Edge: IL-21 and TLR Signaling Regulate Germinal Center Responses in a B Cell-Intrinsic Manner. Journal of Immunology, 2010, 184, 4615-4619.	0.8	103
51	TAP1-independent loading of class I molecules by exogenous viral proteins. European Journal of Immunology, 1995, 25, 1739-1743.	2.9	97
52	Presentation of endogenous viral proteins in association with major histocompatibility complex class II: On the role of intracellular compartmentalization, invariant chain and the TAP transporter system. European Journal of Immunology, 1995, 25, 3402-3411.	2.9	97
53	Immunity to viruses in B cellâ€deficient mice: Influence of antibodies on virus persistence and on T cell memory. European Journal of Immunology, 1996, 26, 2257-2262.	2.9	97
54	Virus-induced humoral immunity: on how B cell responses are initiated. Current Opinion in Virology, 2013, 3, 357-362.	5.4	90

#	Article	IF	CITATIONS
55	Formalin inactivation of vesicular stomatitis virus impairs T-cell- but not T-help-independent B-cell responses. Journal of Virology, 1993, 67, 3917-3922.	3.4	90
56	Active immunization with ILâ€1 displayed on virusâ€like particles protects from autoimmune arthritis. European Journal of Immunology, 2008, 38, 877-887.	2.9	89
57	Induction of protective cytotoxic T cells with viral proteins. European Journal of Immunology, 1994, 24, 2228-2236.	2.9	88
58	Mechanisms of allergen-specific desensitization. Journal of Allergy and Clinical Immunology, 2010, 126, 375-383.	2.9	86
59	A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virology Journal, 2010, 7, 146.	3.4	85
60	COVID-19: Mechanisms of Vaccination and Immunity. Vaccines, 2020, 8, 404.	4.4	81
61	Designing Recombinant Vaccines with Viral Properties: A Rational Approach to More Effective Vaccines. Current Molecular Medicine, 2007, 7, 143-155.	1.3	80
62	Carrier induced epitopic suppression of antibody responses induced by virus-like particles is a dynamic phenomenon caused by carrier-specific antibodies. Vaccine, 2010, 28, 5503-5512.	3.8	80
63	Free recirculation of memory B cells versus antigen-dependent differentiation to antibody-forming cells. Journal of Immunology, 1994, 153, 3386-97.	0.8	79
64	Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer's and cat allergy. Npj Vaccines, 2017, 2, 30.	6.0	78
65	Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp-1 and XBP-1. Journal of Experimental Medicine, 2005, 201, 993-1005.	8.5	77
66	Universal vaccine against influenza virus: Linking <scp>TLR</scp> signaling to antiâ€viral protection. European Journal of Immunology, 2012, 42, 863-869.	2.9	77
67	Virusâ€like particles for vaccination against cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1579.	6.1	74
68	Rapid Response of Marginal Zone B Cells to Viral Particles. Journal of Immunology, 2004, 173, 4308-4316.	0.8	72
69	Vaccine against peanut allergy based on engineered virus-like particles displaying single major peanut allergens. Journal of Allergy and Clinical Immunology, 2020, 145, 1240-1253.e3.	2.9	72
70	Virusâ€like particles induce robust human Tâ€helper cell responses. European Journal of Immunology, 2012, 42, 330-340.	2.9	69
71	Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. Journal of Controlled Release, 2017, 251, 92-100.	9.9	69
72	In vitro data suggest that Indian delta variant B.1.617 of SARS oVâ€⊋ escapes neutralization by both receptor affinity and immune evasion. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 111-117.	5.7	69

#	Article	IF	CITATIONS
73	Alveolar Macrophages and Lung Dendritic Cells Sense RNA and Drive Mucosal IgA Responses. Journal of Immunology, 2009, 183, 3788-3799.	0.8	67
74	Biosensor-based selective detection of Zika virus specific antibodies in infected individuals. Biosensors and Bioelectronics, 2018, 113, 101-107.	10.1	67
75	Efficient homologous prime-boost strategies for T?cell vaccination based on virus-like particles. European Journal of Immunology, 2005, 35, 816-821.	2.9	66
76	Therapeutic vaccines for chronic diseases: successes and technical challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2815-2822.	4.0	64
77	Vaccination against nicotine: an emerging therapy for tobacco dependence. Expert Opinion on Investigational Drugs, 2007, 16, 1775-1783.	4.1	63
78	Safety and immunogenicity of a virus-like particle pandemic influenza A (H1N1) 2009 vaccine: Results from a double-blinded, randomized Phase I clinical trial in healthy Asian volunteers. Vaccine, 2014, 32, 5041-5048.	3.8	63
79	How many specific B cells are needed to protect against a virus?. Journal of Immunology, 1994, 152, 4235-41.	0.8	62
80	Antiviral immune responses in mice deficient for both interleukin-2 and interleukin-4. Journal of Virology, 1995, 69, 4842-4846.	3.4	58
81	Viral Particles Drive Rapid Differentiation of Memory B Cells into Secondary Plasma Cells Producing Increased Levels of Antibodies. Journal of Immunology, 2014, 192, 5499-5508.	0.8	57
82	Development of an Interleukin-1β Vaccine in Patients with Type 2 Diabetes. Molecular Therapy, 2016, 24, 1003-1012.	8.2	57
83	The <i>3Ds</i> in virusâ€like particle basedâ€vaccines: " <i>Design, Delivery and Dynamics</i> ― Immunological Reviews, 2020, 296, 155-168.	6.0	57
84	Treating insect-bite hypersensitivity in horses with active vaccination against IL-5. Journal of Allergy and Clinical Immunology, 2018, 142, 1194-1205.e3.	2.9	56
85	Regulation of IgG antibody titers by the amount persisting of immune-complexed antigen. European Journal of Immunology, 1994, 24, 2567-2570.	2.9	53
86	Blocking IL-1α but not IL-1β increases susceptibility to chronic Mycobacterium tuberculosis infection in mice. Vaccine, 2011, 29, 1339-1346.	3.8	53
87	The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology, 2016, 59, 74-110.	2.8	52
88	Active immunotherapy for chronic diseases. Vaccine, 2013, 31, 1777-1784.	3.8	51
89	Antiviral immune responses in Itk-deficient mice. Journal of Virology, 1997, 71, 7253-7257.	3.4	51
90	lgG-mediated down-regulation of IgE bound to mast cells: a potential novel mechanism of allergen-specific desensitization. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 338-347.	5.7	50

#	Article	IF	CITATIONS
91	Allergens displayed on virusâ€like particles are highly immunogenic but fail to activate human mast cells. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 341-349.	5.7	49
92	SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. Npj Vaccines, 2021, 6, 2.	6.0	48
93	Preclinical efficacy and safety of an anti-IL-1β vaccine for the treatment of type 2 diabetes. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14048.	4.1	47
94	T-cell independent IgM and enduring protective IgG antibodies induced by chimeric measles viruses. Nature Medicine, 1998, 4, 945-948.	30.7	46
95	Secondary influenza challenge triggers resident memory B cell migration and rapid relocation to boost antibody secretion at infected sites. Immunity, 2022, 55, 718-733.e8.	14.3	44
96	Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein. Virology Journal, 2009, 6, 224.	3.4	43
97	Immunization of cats to induce neutralizing antibodies against Fel d 1, the major feline allergen in human subjects. Journal of Allergy and Clinical Immunology, 2019, 144, 193-203.	2.9	42
98	Active vaccination against interleukinâ€5 as longâ€ŧerm treatment for insectâ€bite hypersensitivity in horses. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 572-582.	5.7	42
99	Stateâ€ofâ€theâ€art in marketed adjuvants and formulations in Allergen Immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 746-760.	5.7	42
100	Bacterially Produced Recombinant Influenza Vaccines Based on Virus-Like Particles. PLoS ONE, 2013, 8, e78947.	2.5	42
101	Allergen-specific immunotherapy: is it vaccination against toxins after all?. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 13-23.	5.7	41
102	Vaccination with nanoparticles combined with micro-adjuvants protects against cancer. , 2019, 7, 114.		41
103	Intralymphatic immunotherapy: Time interval between injections is essential. Journal of Allergy and Clinical Immunology, 2014, 133, 930-931.	2.9	40
104	Adjusted Particle Size Eliminates the Need of Linkage of Antigen and Adjuvants for Appropriated T Cell Responses in Virus-Like Particle-Based Vaccines. Frontiers in Immunology, 2017, 8, 226.	4.8	40
105	Targeting Mutated Plus Germline Epitopes Confers Pre-clinical Efficacy of an Instantly Formulated Cancer Nano-Vaccine. Frontiers in Immunology, 2019, 10, 1015.	4.8	39
106	Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo Journal International, 2018, 27, 245-255.	2.0	38
107	Type of RNA Packed in VLPs Impacts IgG Class Switching—Implications for an Influenza Vaccine Design. Vaccines, 2019, 7, 47.	4.4	38
108	Active immunisation targeting nerve growth factor attenuates chronic pain behaviour in murine osteoarthritis. Annals of the Rheumatic Diseases, 2019, 78, 672-675.	0.9	37

#	Article	IF	CITATIONS
109	Cytoplasmic glycoengineering enables biosynthesis of nanoscale glycoprotein assemblies. Nature Communications, 2019, 10, 5403.	12.8	36
110	Low-affinity B cells transport viral particles from the lung to the spleen to initiate antibody responses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20566-20571.	7.1	35
111	A scalable and highly immunogenic virusâ€like particleâ€based vaccine against SARSâ€CoVâ€2. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 243-257.	5.7	35
112	Immunogenicity of a viral model vaccine after different inactivation procedures. Medical Microbiology and Immunology, 1994, 183, 95-104.	4.8	34
113	Interleukin 31 in insect bite hypersensitivity—Alleviating clinical symptoms by active vaccination against itch. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 862-871.	5.7	34
114	Accuracy of serological testing for SARSâ€CoVâ€2 antibodies: First results of a large mixedâ€method evaluation study. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 853-865.	5.7	34
115	Vaccination against Alzheimer disease. Human Vaccines and Immunotherapeutics, 2014, 10, 847-851.	3.3	33
116	Induction of Human T-cell and Cytokine Responses Following Vaccination with a Novel Influenza Vaccine. Scientific Reports, 2018, 8, 18007.	3.3	33
117	Zika Virus-Derived E-DIII Protein Displayed on Immunologically Optimized VLPs Induces Neutralizing Antibodies without Causing Enhancement of Dengue Virus Infection. Vaccines, 2019, 7, 72.	4.4	33
118	Immunization strategies for <i>Clostridium difficile</i> infections. Expert Review of Vaccines, 2012, 11, 469-479.	4.4	32
119	Vaccination against IL-31 for the treatment of atopic dermatitis in dogs. Journal of Allergy and Clinical Immunology, 2018, 142, 279-281.e1.	2.9	32
120	Development of a Vaccine against SARS-CoV-2 Based on the Receptor-Binding Domain Displayed on Virus-Like Particles. Vaccines, 2021, 9, 395.	4.4	32
121	Innate signaling regulates crossâ€priming at the level of DC licensing and not antigen presentation. European Journal of Immunology, 2010, 40, 103-112.	2.9	31
122	Detecting circulating antibodies by controlled surface modification with specific target proteins: Application to malaria. Biosensors and Bioelectronics, 2017, 91, 833-841.	10.1	31
123	T cell development in CD8-/- mice. Thymic positive selection is biased toward the helper phenotype. Journal of Immunology, 1995, 155, 3727-33.	0.8	31
124	A VLPâ€based vaccine against interleukinâ€1α protects mice from atherosclerosis. European Journal of Immunology, 2013, 43, 716-722.	2.9	30
125	Plasmodium vivax malaria vaccines: Why are we where we are?. Human Vaccines and Immunotherapeutics, 2013, 9, 2558-2565.	3.3	30
126	BNT162b2 mRNA COVIDâ€19 vaccine induces antibodies of broader crossâ€reactivity than natural infection, but recognition of mutant viruses is up to 10â€fold reduced. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2895-2998.	5.7	29

#	Article	IF	CITATIONS
127	Virus-Like Particle (VLP) Plus Microcrystalline Tyrosine (MCT) Adjuvants Enhance Vaccine Efficacy Improving T and B Cell Immunogenicity and Protection against Plasmodium berghei/vivax. Vaccines, 2017, 5, 10.	4.4	28
128	An unexpected protective role of low-affinity allergen-specific IgG through the inhibitory receptor FcγRIIb. Journal of Allergy and Clinical Immunology, 2018, 142, 1529-1536.e6.	2.9	28
129	A vaccine against Alzheimer`s disease: anything left but faith?. Expert Opinion on Biological Therapy, 2019, 19, 73-78.	3.1	27
130	The impact of size on particle drainage dynamics and antibody response. Journal of Controlled Release, 2021, 331, 296-308.	9.9	27
131	Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles. PLoS ONE, 2017, 12, e0181844.	2.5	27
132	CD23 provides a noninflammatory pathway for IgE-allergen complexes. Journal of Allergy and Clinical Immunology, 2020, 145, 301-311.e4.	2.9	26
133	Molecular definition of severe acute respiratory syndrome coronavirus 2 receptorâ€binding domain mutations: Receptor affinity versus neutralization of receptor interaction. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 143-149.	5.7	26
134	Enhanced Neutralizing Antibody Titers and Th1 Polarization from a Novel Escherichia coli Derived Pandemic Influenza Vaccine. PLoS ONE, 2013, 8, e76571.	2.5	25
135	AP205 VLPs Based on Dimerized Capsid Proteins Accommodate RBM Domain of SARS-CoV-2 and Serve as an Attractive Vaccine Candidate. Vaccines, 2021, 9, 403.	4.4	25
136	Functional Reconstruction of Structurally Complex Epitopes using CLIPSâ,,¢ Technology. The Open Vaccine Journal, 2009, 2, 56-67.	0.6	25
137	T Cell-dependent and -Independent IgA Responses: Role of TLR Signalling. Immunological Investigations, 2010, 39, 407-428.	2.0	24
138	Vaccination against Allergy: A Paradigm Shift?. Trends in Molecular Medicine, 2020, 26, 357-368.	6.7	24
139	Combined vaccination against IL-5 and eotaxin blocks eosinophilia in mice. Vaccine, 2010, 28, 3192-3200.	3.8	23
140	RNA and Toll-Like Receptor 7 License the Generation of Superior Secondary Plasma Cells at Multiple Levels in a B Cell Intrinsic Fashion. Frontiers in Immunology, 2019, 10, 736.	4.8	23
141	The thioredoxinâ€1 and glutathione/glutaredoxinâ€1 systems redundantly fuel murine Bâ€cell development and responses. European Journal of Immunology, 2019, 49, 709-723.	2.9	23
142	A novel recycling mechanism of native IgE-antigen complexes in human B cells facilitates transfer of antigen to dendritic cells for antigen presentation. Journal of Allergy and Clinical Immunology, 2018, 142, 557-568.e6.	2.9	21
143	Evaluation of Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites as a Preerythrocytic P. vivax Vaccine. Vaccine Journal, 2017, 24, .	3.1	20
144	Distinct T helper cell dependence of memory B ell proliferation versus plasma cell differentiation. Immunology, 2017, 150, 329-342.	4.4	20

#	Article	IF	CITATIONS
145	Strategies to Prevent SARS-CoV-2-Mediated Eosinophilic Disease in Association with COVID-19 Vaccination and Infection. International Archives of Allergy and Immunology, 2020, 181, 624-628.	2.1	20
146	Employing bacteria machinery for antibiotic detection: Using DNA gyrase for ciprofloxacin detection. Chemical Engineering Journal, 2021, 409, 128135.	12.7	20
147	Immunization of Cats against Fel d 1 Results in Reduced Allergic Symptoms of Owners. Viruses, 2020, 12, 288.	3.3	19
148	Vaccination Against Amyloidogenic Aggregates in Pancreatic Islets Prevents Development of Type 2 Diabetes Mellitus. Vaccines, 2020, 8, 116.	4.4	17
149	A Single Monoclonal Antibody against the Peanut Allergen Ara h 2 Protects against Systemic and Local Peanut Allergy. International Archives of Allergy and Immunology, 2020, 181, 334-341.	2.1	17
150	Microcrystalline Tyrosine (MCT®): A Depot Adjuvant in Licensed Allergy Immunotherapy Offers New Opportunities in Malaria. Vaccines, 2017, 5, 32.	4.4	15
151	Bedside formulation of a personalized multi-neoantigen vaccine against mammary carcinoma. , 2022, 10, e002927.		14
152	Intranasal administration of a virus like particlesâ€based vaccine induces neutralizing antibodies against SARSâ€CoVâ€2 and variants of concern. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2446-2458.	5.7	14
153	Lowâ€affinity but highâ€avidity interactions may offer an explanation for IgEâ€mediated allergen crossâ€reactivity. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2565-2574.	5.7	13
154	Shaping Modern Vaccines: Adjuvant Systems Using MicroCrystalline Tyrosine (MCT®). Frontiers in Immunology, 2020, 11, 594911.	4.8	12
155	Safety Profile of a Virus-Like Particle-Based Vaccine Targeting Self-Protein Interleukin-5 in Horses. Vaccines, 2020, 8, 213.	4.4	12
156	Neutralization of MERS coronavirus through a scalable nanoparticle vaccine. Npj Vaccines, 2021, 6, 107.	6.0	12
157	Glycan-specific IgG anti-IgE autoantibodies are protective against allergic anaphylaxis in a murine model. Journal of Allergy and Clinical Immunology, 2021, 147, 1430-1441.	2.9	11
158	TLR7 Signaling Shapes and Maintains Antibody Diversity Upon Virus-Like Particle Immunization. Frontiers in Immunology, 2021, 12, 827256.	4.8	11
159	Increased Receptor Affinity and Reduced Recognition by Specific Antibodies Contribute to Immune Escape of SARS-CoV-2 Variant Omicron. Vaccines, 2022, 10, 743.	4.4	11
160	Early Transcriptional Signature in Dendritic Cells and the Induction of Protective T Cell Responses Upon Immunization With VLPs Containing TLR Ligands—A Role for CCL2. Frontiers in Immunology, 2019, 10, 1679.	4.8	10
161	A Novel Double Mosaic Virus-like Particle-Based Vaccine against SARS-CoV-2 Incorporates Both Receptor Binding Motif (RBM) and Fusion Domain. Vaccines, 2021, 9, 1287.	4.4	10
162	Correlation of tolerogenicity of a viral antigen with its immunogenicity. Journal of Immunology, 1997, 158, 5106-11.	0.8	10

1

#	Article	IF	CITATIONS
163	Therapeutic silence of pleiotrophin by targeted delivery of siRNA and its effect on the inhibition of tumor growth and metastasis. PLoS ONE, 2017, 12, e0177964.	2.5	9
164	Augmenting the Immune Response against a Stabilized HIV-1 Clade C Envelope Trimer by Silica Nanoparticle Delivery. Vaccines, 2021, 9, 642.	4.4	9
165	Virus-Like Particles Are Efficient Tools for Boosting mRNA-Induced Antibodies. Frontiers in Immunology, 0, 13, .	4.8	8
166	DOPS Adjuvant Confers Enhanced Protection against Malaria for VLP-TRAP Based Vaccines. Diseases (Basel, Switzerland), 2018, 6, 107.	2.5	7
167	Virus-Specific Secondary Plasma Cells Produce Elevated Levels of High-Avidity Antibodies but Are Functionally Short Lived. Frontiers in Immunology, 2019, 10, 1831.	4.8	6
168	The 5th virus-like particle and nano-particle vaccines (VLPNPV) conference. Expert Review of Vaccines, 2019, 18, 1-3.	4.4	6
169	Murine CD8 Tâ€cell functional avidity is stable in vivo but not in vitro: Independence from homologous prime/boost time interval and antigen density. European Journal of Immunology, 2020, 50, 505-514.	2.9	6
170	Anti-IAPP Monoclonal Antibody Improves Clinical Symptoms in a Mouse Model of Type 2 Diabetes. Vaccines, 2021, 9, 1316.	4.4	6
171	Kupffer Cells and Blood Monocytes Orchestrate the Clearance of Iron–Carbohydrate Nanoparticles from Serum. International Journal of Molecular Sciences, 2022, 23, 2666.	4.1	6
172	Increased receptor affinity of SARS-CoV-2: a new immune escape mechanism. Npj Vaccines, 2022, 7, .	6.0	6
173	<scp>T</scp> aurine: Energy drink for <scp>T</scp> cells. European Journal of Immunology, 2012, 42, 819-821.	2.9	5
174	The Prospects of an Active Vaccine Against Asthma Targeting IL-5. Frontiers in Microbiology, 2018, 9, 2522.	3.5	4
175	Induction of Broadly Cross-Reactive Antibodies by Displaying Receptor Binding Domains of SARS-CoV-2 on Virus-like Particles. Vaccines, 2022, 10, 307.	4.4	4
176	The Future of SARS-CoV-2 Vaccination. New England Journal of Medicine, 2022, 386, 899-900.	27.0	4
177	Comparison of Bacterial Expression Systems Based on Potato Virus Y-like Particles for Vaccine Generation. Vaccines, 2022, 10, 485.	4.4	4
178	Immunogenicity and Immunodominance in Antibody Responses. Current Topics in Microbiology and Immunology, 2019, 428, 89-102.	1.1	3
179	Special Issue "Virus-Like Particle Vaccines― Viruses, 2020, 12, 872.	3.3	2

180 Noninfectious Disease Vaccines. , 2018, , 689-697.e4.

#	Article	IF	CITATIONS
181	Cover Image, Volume 12, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1610.	6.1	0