Stephen Holman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9273927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nature Chemistry, 2014, 6, 281-294.	13.6	753
2	Global absolute quantification of a proteome: Challenges in the deployment of a QconCAT strategy. Proteomics, 2011, 11, 2957-2970.	2.2	103
3	Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring. Molecular and Cellular Proteomics, 2016, 15, 1309-1322.	3.8	80
4	The use of selected reaction monitoring in quantitative proteomics. Bioanalysis, 2012, 4, 1763-1786.	1.5	66
5	Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies. Nature Communications, 2022, 13, 801.	12.8	47
6	Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics. Journal of Proteome Research, 2016, 15, 2945-2959.	3.7	46
7	Quantitative analysis of chaperone network throughput in budding yeast. Proteomics, 2013, 13, 1276-1291.	2.2	33
8	Dynamic phosphorylation of RelA on Ser42 and Ser45 in response to TNFα stimulation regulates DNA binding and transcription. Open Biology, 2016, 6, 160055.	3.6	19
9	Absolute protein quantification of the yeast chaperome under conditions of heat shock. Proteomics, 2016, 16, 2128-2140.	2.2	18
10	Quantitative Proteomics of Enriched Esophageal and Gut Tissues from the Human Blood Fluke <i>Schistosoma mansoni</i> Pinpoints Secreted Proteins for Vaccine Development. Journal of Proteome Research, 2020, 19, 314-326.	3.7	17
11	RePLiCal: A QconCAT Protein for Retention Time Standardization in Proteomics Studies. Journal of Proteome Research, 2016, 15, 1090-1102.	3.7	16
12	Advances in highâ€resolution mass spectrometry applied to pharmaceuticals in 2020: A whole new age of information. Analytical Science Advances, 2021, 2, 142-156.	2.8	16
13	Evaluation of dimethyl sulfoxide (DMSO) as a mobile phase additive during top 3 label-free quantitative proteomics. International Journal of Mass Spectrometry, 2015, 391, 157-160.	1.5	15
14	A proteome-integrated, carbon source dependent genetic regulatory network in <i>Saccharomyces cerevisiae</i> . Molecular Omics, 2020, 16, 59-72.	2.8	11
15	Peptide Scrambling During Collision-Induced Dissociation is Influenced by <i>N</i> -terminal Residue Basicity. Journal of the American Society for Mass Spectrometry, 2014, 25, 1927-1938.	2.8	10
16	Protein turnover measurement using selected reaction monitoring-mass spectrometry (SRM-MS). Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150362.	3.4	10
17	Glycolytic flux in <i>Saccharomyces cerevisiae</i> is dependent on RNA polymerase III and its negative regulator Maf1. Biochemical Journal, 2019, 476, 1053-1082.	3.7	9
18	A Rapid Methodology for the Characterization of Dialkyl Tertiary Amine-N-Oxide Metabolites Using Structurally Dependent Dissociation Pathways and Reconstructed Ion Current Chromatograms. Analytical Chemistry, 2010, 82, 2347-2354.	6.5	8

STEPHEN HOLMAN

#	Article	IF	CITATIONS
19	A quantitative assessment of the chemical variation in food grade polyethylene cling film, a common wrapping material for illicit drugs, using attenuated total reflection-Fourier transform infrared spectroscopy. Analytical Methods, 2012, 4, 1667.	2.7	8
20	DOSCATs: Double standards for protein quantification. Scientific Reports, 2017, 7, 45570.	3.3	8
21	Advancements in the characterisation of oligonucleotides by high performance liquid chromatographyâ€mass spectrometry in 2021: A short review. Analytical Science Advances, 2022, 3, 90-102.	2.8	8
22	Representation of selectedâ€reaction monitoring data in the mzQuantML data standard. Proteomics, 2015, 15, 2592-2596.	2.2	7
23	Evidence for siteâ€specific intraâ€ionic hydrogen/deuterium exchange in the lowâ€energy collisionâ€induced dissociation product ion spectra of protonated small molecules generated by electrospray ionisation. Journal of Mass Spectrometry, 2010, 45, 347-357.	1.6	6
24	Meet the Associate Editors: Stephen Holman. Rapid Communications in Mass Spectrometry, 2019, 33, 11-13.	1.5	5
25	Towards a generic method for ion chromatography/mass spectrometry of lowâ€molecularâ€weight amines in pharmaceutical drug discovery and development. Rapid Communications in Mass Spectrometry, 2020, 34 Suppl 4, e8680.	1.5	4
26	The lowâ€energy collisionâ€induced dissociation product ion spectra of protonated betaâ€blockers reveal an analogy to fragmentation behaviour under electron ionisation conditions. Journal of Mass Spectrometry, 2011, 46, 1182-1185.	1.6	3
27	Application of open port sampling interface mass spectrometry (OPSIâ€MS) to deuterium exchange as an aid for structural elucidation. Rapid Communications in Mass Spectrometry, 2021, 35, e8536.	1.5	3
28	Response to "Molecular ion: A more contemporary definition― Journal of Mass Spectrometry, 2020, 55, e4649.	1.6	2
29	Response to "In defense of the quasimolecular ion― Journal of Mass Spectrometry, 2021, 56, e4724.	1.6	Ο