
Frank Essmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9273796/publications.pdf Version: 2024-02-01

FDANK FSSMANN

#	Article	lF	CITATIONS
1	The BCL-2 inhibitor ABT-199/venetoclax synergizes with proteasome inhibition via transactivation of the MCL-1 antagonist NOXA. Cell Death Discovery, 2022, 8, 215.	4.7	11
2	BH3-only protein expression determines hepatocellular carcinoma response to sorafenib-based treatment. Cell Death and Disease, 2021, 12, 736.	6.3	10
3	Alectinib treatment improves photodynamic therapy in cancer cell lines of different origin. BMC Cancer, 2021, 21, 971.	2.6	1
4	The BCL-2 selective inhibitor ABT-199 sensitizes soft tissue sarcomas to proteasome inhibition by a concerted mechanism requiring BAX and NOXA. Cell Death and Disease, 2020, 11, 701.	6.3	21
5	Threonine Phosphorylation of lκBζ Mediates Inhibition of Selective Proinflammatory TargetÂGenes. Journal of Investigative Dermatology, 2020, 140, 1805-1814.e6.	0.7	4
6	Abstract 4320: Ovarian cancer persister cells are characterized by enhanced ER stress gene expression correlating with poor survival. , 2020, , .		0
7	Abstract 6227: ABT-199 and Bortezomib synergistically induce apoptosis in soft-tissue sarcomas. , 2020, , .		0
8	Identification of novel agonists by high-throughput screening and molecular modelling of human constitutive androstane receptor isoform 3. Archives of Toxicology, 2019, 93, 2247-2264.	4.2	3
9	Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death and Disease, 2019, 10, 851.	6.3	228
10	Abstract 701: Mitochondrial mass is a critical determinant ofcisPt-induced cell death in ovarian cancer. , 2019, , .		0
11	Abstract 653: Ovarian cancer persister cells: 2D and 3D in-depth characterization and analysis. , 2019, , .		0
12	Contribution of BH3-domain and Transmembrane-domain to the Activity and Interaction of the Pore-forming Bcl-2 Proteins Bok, Bak, and Bax. Scientific Reports, 2018, 8, 12434.	3.3	12
13	A new quinolinone and its natural/artificial derivatives from a shark gill-derived fungus <i>Penicillium polonicum</i> AP2T1. Natural Product Research, 2017, 31, 985-989.	1.8	13
14	Bax/Bak-independent mitochondrial depolarization and reactive oxygen species induction by sorafenib overcome resistance to apoptosis in renal cell carcinoma. Journal of Biological Chemistry, 2017, 292, 6478-6492.	3.4	46
15	Simultaneous quantification of DNA damage and mitochondrial copy number by long-run DNA-damage quantification (LORD-Q). Oncotarget, 2017, 8, 112417-112425.	1.8	12
16	Bok is a genuine multi-BH-domain protein that triggers apoptosis in the absence of Bax and Bak and augments drug response. Journal of Cell Science, 2016, 129, 2213-23.	2.0	42
17	The Atypical Inhibitor of NF-κB, IκBζ, Controls Macrophage Interleukin-10 Expression. Journal of Biological Chemistry, 2016, 291, 12851-12861.	3.4	36
18	Interrogating Substrate Selectivity and Composition of Endogenous Histone Deacetylase Complexes with Chemical Probes. Angewandte Chemie - International Edition, 2016, 55, 1192-1195.	13.8	23

Frank Essmann

#	Article	IF	CITATIONS
19	Genome surveillance in pluripotent stem cells: Low apoptosis threshold and efficient antioxidant defense. Molecular and Cellular Oncology, 2016, 3, e1052183.	0.7	8
20	High Glutathione and Glutathione Peroxidase-2 Levels Mediate Cell-Type-Specific DNA Damage Protection in Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 886-898.	4.8	74
21	LORD-Q: a long-run real-time PCR-based DNA-damage quantification method for nuclear and mitochondrial genome analysis. Nucleic Acids Research, 2014, 42, e41-e41.	14.5	40
22	Enhanced killing of therapyâ€induced senescent tumor cells by oncolytic measles vaccine viruses. International Journal of Cancer, 2014, 134, 235-243.	5.1	47
23	Transdifferentiation of Vascular Smooth Muscle Cells to Macrophage-Like Cells During Atherogenesis. Circulation Research, 2014, 115, 662-667.	4.5	412
24	α-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle, 2013, 12, 1922-1927.	2.6	55
25	Identification of the kinesin KifC3 as a new player for positioning of peroxisomes and other organelles in mammalian cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3013-3024.	4.1	23
26	EVI-1 modulates leukemogenic potential and apoptosis sensitivity in human acute lymphoblastic leukemia. Leukemia, 2013, 27, 56-65.	7.2	41
27	<i>SOX2</i> Expression Associates with Stem Cell State in Human Ovarian Carcinoma. Cancer Research, 2013, 73, 5544-5555.	0.9	129
28	T-helper-1-cell cytokines drive cancer into senescence. Nature, 2013, 494, 361-365.	27.8	601
29	Phosphorylation of Atg5 by the Gadd45β–MEKK4-p38 pathway inhibits autophagy. Cell Death and Differentiation, 2013, 20, 321-332.	11.2	107
30	lκBζ is a regulator for the senescence-associated secretory phenotype in DNA damage- and oncogene-induced senescence. Journal of Cell Science, 2013, 126, 3738-45.	2.0	40
31	Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR). Cell Cycle, 2013, 12, 3421-3432.	2.6	55
32	lκBζ Is a Transcriptional Key Regulator of CCL2/MCP-1. Journal of Immunology, 2013, 190, 4812-4820.	0.8	81
33	Differential Induction of Apoptosis and Senescence by the DNA Methyltransferase Inhibitors 5-Azacytidine and 5-Aza-2′-Deoxycytidine in Solid Tumor Cells. Molecular Cancer Therapeutics, 2013, 12, 2226-2236.	4.1	81
34	Kinetic Tracking of Therapy-Induced Senescence Using the Real-Time Cell Analyzer Single Plate System. Assay and Drug Development Technologies, 2012, 10, 289-295.	1.2	15
35	Deubiquitinase USP9x Confers Radioresistance through Stabilization of Mcl-1. Neoplasia, 2012, 14, 893-IN4.	5.3	53
36	Translational approaches targeting the p53 pathway for anti ancer therapy. British Journal of Pharmacology, 2012, 165, 328-344.	5.4	68

FRANK ESSMANN

#	Article	IF	CITATIONS
37	Differential regulation of the proapoptotic multidomain protein Bak by p53 and p73 at the promoter level. Cell Death and Differentiation, 2011, 18, 1130-1139.	11.2	55
38	EVI-1 Mediates Apoptosis Resistance Via CD261 Induction and Enhances Leukemogenic Potential in Human Acute Lymphoblastic Leukemia. Blood, 2011, 118, 1356-1356.	1.4	0
39	Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines. Tumor Biology, 2010, 31, 297-307.	1.8	73
40	Induction of indoleamine 2, 3-dioxygenase by death receptor activation contributes to apoptosis of melanoma cells via mitochondrial damage-dependent ROS accumulation. Cellular Signalling, 2010, 22, 197-211.	3.6	29
41	The centrosomal protein TACC3 controls paclitaxel sensitivity by modulating a premature senescence program. Oncogene, 2010, 29, 6184-6192.	5.9	47
42	TNF Induces Choroid Plexus Epithelial Cell Barrier Alterations by Apoptotic and Nonapoptotic Mechanisms. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	20
43	The centrosome and mitotic spindle apparatus in cancer and senescence. Cell Cycle, 2010, 9, 4469-4473.	2.6	24
44	The do's and don'ts of p53 isoforms. Biological Chemistry, 2009, 390, 951-963.	2.5	21
45	Functional characterization of p53β and p53γ, two isoforms of the tumor suppressor p53. Cell Cycle, 2009, 8, 1238-1248.	2.6	42
46	Apoptin, a tumor-selective killer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1335-1342.	4.1	90
47	Pifithrin-α protects against DNA damage-induced apoptosis downstream of mitochondria independent of p53. Cell Death and Differentiation, 2009, 16, 869-878.	11.2	84
48	Adaptation of topoisomerase I paralogs to nuclear and mitochondrial DNA. Nucleic Acids Research, 2009, 37, 6414-6428.	14.5	23
49	TACC3 depletion sensitizes to paclitaxel-induced cell death and overrides p21WAF-mediated cell cycle arrest. Oncogene, 2008, 27, 116-125.	5.9	35
50	Activation of the mitochondrial death pathway is commonly mediated by a preferential engagement of Bak. Oncogene, 2008, 27, 1387-1396.	5.9	28
51	The BH3-only member Noxa causes apoptosis in melanoma cells by multiple pathways. Oncogene, 2008, 27, 4557-4568.	5.9	56
52	Human Skin Endothelial Cells Can Express All 10 <i>TLR</i> Genes and Respond to Respective Ligands. Vaccine Journal, 2008, 15, 138-146.	3.1	93
53	Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis. Journal of Cell Biology, 2007, 179, 701-715.	5.2	43
54	The Transforming Acidic Coiled Coil 3 Protein Is Essential for Spindle-dependent Chromosome Alignment and Mitotic Survival. Journal of Biological Chemistry, 2007, 282, 29273-29283.	3.4	72

FRANK ESSMANN

#	Article	IF	CITATIONS
55	The Multiple Battles Fought by Anti-Apoptotic p21. Cell Cycle, 2007, 6, 407-413.	2.6	95
56	Lidocaine Induces Apoptosis via the Mitochondrial Pathway Independently of Death Receptor Signaling. Anesthesiology, 2007, 107, 136-143.	2.5	117
57	Cell death, caspase activation, and HMGB1 release of porcine choroid plexus epithelial cells during Streptococcus suis infection in vitro. Brain Research, 2006, 1100, 1-12.	2.2	45
58	The Proteasome Is Required for Rapid Initiation of Death Receptor-Induced Apoptosis. Molecular and Cellular Biology, 2006, 26, 1967-1978.	2.3	37
59	A Novel Member of the lκB Family, Human lκB-ζ, Inhibits Transactivation of p65 and Its DNA Binding. Journal of Biological Chemistry, 2006, 281, 12645-12654.	3.4	107
60	p21 Blocks Irradiation-Induced Apoptosis Downstream of Mitochondria by Inhibition of Cyclin-Dependent Kinase–Mediated Caspase-9 Activation. Cancer Research, 2006, 66, 11254-11262.	0.9	112
61	Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway. Oncogene, 2005, 24, 1904-1913.	5.9	69
62	Irradiation-induced Translocation of p53 to Mitochondria in the Absence of Apoptosis. Journal of Biological Chemistry, 2005, 280, 37169-37177.	3.4	47
63	Apoptosis Resistance of MCF-7 Breast Carcinoma Cells to Ionizing Radiation Is Independent of p53 and Cell Cycle Control but Caused by the Lack of Caspase-3 and a Caffeine-Inhibitable Event. Cancer Research, 2004, 64, 7065-7072.	0.9	101
64	Tumor necrosis factor α sensitizes malignant cells to chemotherapeutic drugs via the mitochondrial apoptosis pathway independently of caspase-8 and NF-κB. Oncogene, 2004, 23, 6743-6759.	5.9	30
65	Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway. EMBO Journal, 2003, 22, 3580-3590.	7.8	107
66	A rapid nonradioactive peptide phosphorylation assay. Journal of Experimental Therapeutics and Oncology, 2003, 3, 59-61.	0.5	3
67	Staphylococcus aureus α-toxin-induced cell death: predominant necrosis despite apoptotic caspase activation. Cell Death and Differentiation, 2003, 10, 1260-1272.	11.2	112
68	Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene, 2003, 22, 2236-2247.	5.9	172
69	Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood, 2001, 97, 1378-1387.	1.4	237
70	Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia, 2001, 15, 1735-1742.	7.2	162
71	GDP dissociation inhibitor D4-GDI (Rho-GDI 2), but not the homologous Rho-GDI 1, is cleaved by caspase-3 during drug-induced apoptosis. Biochemical Journal, 2000, 346, 777-783.	3.7	77
72	GDP dissociation inhibitor D4-GDI (Rho-GDI 2), but not the homologous Rho-GDI 1, is cleaved by caspase-3 during drug-induced apoptosis. Biochemical Journal, 2000, 346, 777.	3.7	36