
Aaron J Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9273087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Provenance and maximum depositional ages of Upper Triassic and Jurassic sandstone, northâ€eastern Mexico. Basin Research, 2022, 34, 1164-1190.	2.7	3
2	Stable isotope compositions of surface water in Mexico between 22–26 °N. Journal of South American Earth Sciences, 2022, 115, 103723.	1.4	1
3	Removal of barite from zircon using an aqueous solution of diethylenetriaminepentaacetic acid and potassium carbonate. American Mineralogist, 2021, , .	1.9	0
4	Experiments on two techniques for the removal of barite from detrital zircon. American Mineralogist, 2021, 106, 930-943.	1.9	2
5	Crustal structure and Curie point depth in central Mexico inferred from the spectral analysis and forward modeling of potential field data. Journal of South American Earth Sciences, 2021, 112, 103565.	1.4	7
6	Five hundred million years of punctuated addition of juvenile crust during extension in the Goochland Terrane, central Appalachian Piedmont Province. International Geology Review, 2020, 62, 523-548.	2.1	3
7	The Greater Himalayan Thrust Belt: Insight Into the Assembly of the Exhumed Himalayan Metamorphic Core, Modi Khola Valley, Central Nepal. Tectonics, 2020, 39, e2020TC006252.	2.8	9
8	Cambrian geology of the Salt Range of Pakistan: Linking the Himalayan margin to the Indian craton: Comment. Bulletin of the Geological Society of America, 2020, 132, 444-445.	3.3	1
9	Wrinkle ridges on Mercury and the Moon within and outside of mascons. Icarus, 2019, 331, 226-237.	2.5	16
10	Further detrital zircon evidence for peri-Gondwanan blocks in the central Appalachian Piedmont Province, USA. Canadian Journal of Earth Sciences, 2019, 56, 1061-1076.	1.3	3
11	Avances recientes en la comprensión del sistema de vida terrestre del Ediacárico tardÃo en China meridional y el Ãrtico siberiano. Estudios Geologicos, 2019, 75, 097.	0.2	1
12	A review of Himalayan stratigraphy, magmatism, and structure. Gondwana Research, 2017, 49, 42-80.	6.0	82
13	A review of definitions of the Himalayan Main Central Thrust. International Journal of Earth Sciences, 2017, 106, 2131-2145.	1.8	67
14	Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology, 2016, 14, 344-363.	2.4	78
15	Laurentian and Amazonian sediment sources to Neoproterozoic–lower Paleozoic Maryland Piedmont rocks. , 2015, 11, 1042-1061.		5
16	Extrusion vs. duplexing models of Himalayan mountain building 3: duplexing dominates from the Oligocene to Present. International Geology Review, 2015, 57, 1-27.	2.1	75
17	Coulomb stress transfer and modeled permanent vertical surface deformation from the August 2011, Mineral, Virginia, earthquake. , 2015, , .		2
18	Muscovite ⁴⁰ Ar/ ³⁹ Ar ages help reveal the Neogene tectonic evolution of the southern Annapurna Range, central Nepal. Geological Society Special Publication, 2015, 412, 199-220.	1.3	23

AARON J MARTIN

#	Article	IF	CITATIONS
19	Reconstructing the Greater Indian margin: A balanced cross section in central Nepal focusing on the Lesser Himalayan duplex. Tectonics, 2014, 33, 2143-2168.	2.8	72
20	Correlations of fluvial knickzones with landslide dams, lithologic contacts, and faults in the southwestern Annapurna Range, central Nepalese Himalaya. Journal of Geophysical Research, 2012, 117, .	3.3	38
21	Apatite thermochronometry within a knickzone near the Higher Himalaya front, central Nepal: No resolvable fault motion in the past one million years. Tectonics, 2012, 31, .	2.8	22
22	Detrital zircon geochronology of preâ€Tertiary strata in the Tibetanâ€Himalayan orogen. Tectonics, 2011, 30, .	2.8	626
23	Stratigraphic and tectonic implications of field and isotopic constraints on depositional ages of Proterozoic Lesser Himalayan rocks in central Nepal. Precambrian Research, 2011, 185, 1-17.	2.7	64
24	Metamorphism of Greater and Lesser Himalayan rocks exposed in the Modi Khola valley, central Nepal. Contributions To Mineralogy and Petrology, 2010, 159, 203-223.	3.1	67
25	The Lower Cretaceous King Lear Formation, northwest Nevada: Implications for Mesozoic orogenesis in the western U.S. Cordillera. Bulletin of the Geological Society of America, 2010, 122, 537-562.	3.3	14
26	Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers) glaciation and metazoan evolution. Precambrian Research, 2010, 182, 402-412.	2.7	57
27	Sub-millimeter Heterogeneity of Yttrium and Chromium during Growth of Semi-pelitic Garnet. Journal of Petrology, 2009, 50, 1713-1727.	2.8	24
28	The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal. Chemical Geology, 2007, 244, 1-24.	3.3	95
29	lsotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Bulletin of the Geological Society of America, 2005, 117, 926.	3.3	175
30	Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters, 2004, 227, 313-330.	4.4	337
31	Initiation of the Himalayan Orogen as an Early Paleozoic Thin-skinned Thrust Belt. GSA Today, 2003, 13, 4.	2.0	637
32	Flaser and wavy bedding in ephemeral streams: a modern and an ancient example. Sedimentary Geology, 2000, 136, 1-5.	2.1	61