
David L Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9272627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1789-1858.	13.7	8,569
2	Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1211-1259.	13.7	5,578
3	Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1151-1210.	13.7	3,565
4	Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1923-1994.	13.7	3,269
5	The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 2015, 526, 207-211.	27.8	2,140
6	Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1859-1922.	13.7	2,123
7	Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1345-1422.	13.7	1,879
8	Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1260-1344.	13.7	1,589
9	The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 2015, 4, e08347.	6.0	1,428
10	Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2041-2046.	7.1	805
11	Quantifying the Impact of Human Mobility on Malaria. Science, 2012, 338, 267-270.	12.6	788
12	Hospitalizations and Deaths Caused by Methicillin-Resistant <i>Staphylococcus aureus</i> , United States, 1999–2005. Emerging Infectious Diseases, 2007, 13, 1840-1846.	4.3	741
13	Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza. Science, 2006, 312, 447-451.	12.6	726
14	Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019, 4, 854-863.	13.3	699
15	A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal, 2011, 10, 378.	2.3	662
16	Biased efficacy estimates in phase-III dengue vaccine trials due to heterogeneous exposure and differential detectability of primary infections across trial arms. PLoS ONE, 2019, 14, e0210041.	2.5	606
17	Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1084-1150.	13.7	573
18	The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infectious Diseases, The, 2019, 19, 369-381.	9.1	461

#	Article	IF	CITATIONS
19	A World Malaria Map: Plasmodium falciparum Endemicity in 2007. PLoS Medicine, 2009, 6, e1000048.	8.4	460
20	Hitting Hotspots: Spatial Targeting of Malaria for Control and Elimination. PLoS Medicine, 2012, 9, e1001165.	8.4	460
21	A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010. PLoS Neglected Tropical Diseases, 2012, 6, e1814.	3.0	448
22	Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens. PLoS Pathogens, 2012, 8, e1002588.	4.7	432
23	Malaria resurgence: a systematic review and assessment of its causes. Malaria Journal, 2012, 11, 122.	2.3	381
24	Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6434-6439.	7.1	377
25	Statics and dynamics of malaria infection in Anopheles mosquitoes. Malaria Journal, 2004, 3, 13.	2.3	363
26	Revisiting the Basic Reproductive Number for Malaria and Its Implications for Malaria Control. PLoS Biology, 2007, 5, e42.	5.6	362
27	Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites and Vectors, 2013, 6, 351.	2.5	357
28	The Limits and Intensity of Plasmodium falciparum Transmission: Implications for Malaria Control and Elimination Worldwide. PLoS Medicine, 2008, 5, e38.	8.4	344
29	Mapping the zoonotic niche of Ebola virus disease in Africa. ELife, 2014, 3, e04395.	6.0	328
30	Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respiratory Medicine,the, 2019, 7, 69-89.	10.7	326
31	Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proceedings of the United States of America, 2011, 108, 8767-8772.	7.1	320
32	Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3668-3672.	7.1	319
33	The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature, 2005, 438, 492-495.	27.8	316
34	Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature, 2019, 570, 189-193.	27.8	314
35	Operational strategies to achieve and maintain malaria elimination. Lancet, The, 2010, 376, 1592-1603.	13.7	311
36	A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of the Royal Society Interface, 2013, 10, 20120921.	3.4	306

#	Article	IF	CITATIONS
37	Climate change and the global malaria recession. Nature, 2010, 465, 342-345.	27.8	304
38	Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. Lancet, The, 2019, 394, 322-331.	13.7	290
39	Hyperinfectivity: A Critical Element in the Ability of V. cholerae to Cause Epidemics?. PLoS Medicine, 2005, 3, e7.	8.4	289
40	Global Epidemiology of <i>Plasmodium vivax</i> . American Journal of Tropical Medicine and Hygiene, 2016, 95, 15-34.	1.4	287
41	The Potential for Respiratory Droplet–Transmissible A/H5N1 Influenza Virus to Evolve in a Mammalian Host. Science, 2012, 336, 1541-1547.	12.6	286
42	Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1423-1459.	13.7	284
43	Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites and Vectors, 2014, 7, 338.	2.5	280
44	Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet, The, 2019, 394, 332-343.	13.7	276
45	Targeting Asymptomatic Malaria Infections: Active Surveillance in Control and Elimination. PLoS Medicine, 2013, 10, e1001467.	8.4	274
46	Measuring malaria endemicity from intense to interrupted transmission. Lancet Infectious Diseases, The, 2008, 8, 369-378.	9.1	270
47	The Risk of a Mosquito-Borne Infectionin a Heterogeneous Environment. PLoS Biology, 2004, 2, e368.	5.6	269
48	Geographical variation in Plasmodium vivax relapse. Malaria Journal, 2014, 13, 144.	2.3	223
49	Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals. Lancet, The, 2017, 390, 2171-2182.	13.7	214
50	Mapping <i>Plasmodium falciparum</i> Mortality in Africa between 1990 and 2015. New England Journal of Medicine, 2016, 375, 2435-2445.	27.0	205
51	Novel serologic biomarkers provide accurate estimates of recent <i>Plasmodium falciparum</i> exposure for individuals and communities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4438-47.	7.1	188
52	Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infectious Diseases, The, 2017, 17, 330-338.	9.1	185
53	Global mapping of infectious disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120250.	4.0	179
54	Mapping child growth failure in Africa between 2000 and 2015. Nature, 2018, 555, 41-47.	27.8	177

#	Article	IF	CITATIONS
55	Risk Factors for Imipenem-Resistant Pseudomonas aeruginosa among Hospitalized Patients. Clinical Infectious Diseases, 2002, 34, 340-345.	5.8	169
56	Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: Resistance is a regional problem. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3709-3714.	7.1	169
57	Standardizing estimates of the Plasmodium falciparum parasite rate. Malaria Journal, 2007, 6, 131.	2.3	167
58	Host and viral ecology determine bat rabies seasonality and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10208-10213.	7.1	163
59	Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites and Vectors, 2011, 4, 92.	2.5	162
60	Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358.	27.8	161
61	Malaria Transmission, Infection, and Disease at Three Sites with Varied Transmission Intensity in Uganda: Implications for Malaria Control. American Journal of Tropical Medicine and Hygiene, 2015, 92, 903-912.	1.4	157
62	Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: a geospatial modelling analysis. Lancet Infectious Diseases, The, 2021, 21, 59-69.	9.1	152
63	Measuring Changes in Plasmodium falciparum Transmission. Advances in Parasitology, 2014, 84, 151-208.	3.2	151
64	Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 107-117.	1.8	149
65	The geography of imported malaria to non-endemic countries: a meta-analysis of nationally reported statistics. Lancet Infectious Diseases, The, 2017, 17, 98-107.	9.1	149
66	Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malaria Journal, 2014, 13, 111.	2.3	147
67	International population movements and regional <i>Plasmodium falciparum</i> malaria elimination strategies. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12222-12227.	7.1	145
68	The many projected futures of dengue. Nature Reviews Microbiology, 2015, 13, 230-239.	28.6	145
69	Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 185-197.	1.8	142
70	The use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residents. Malaria Journal, 2009, 8, 287.	2.3	137
71	Travel risk, malaria importation and malaria transmission in Zanzibar. Scientific Reports, 2011, 1, 93.	3.3	135
72	Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning. Malaria Journal, 2014, 13, 52.	2.3	133

#	Article	IF	CITATIONS
73	Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017. ELife, 2015, 4, .	6.0	131
74	The Changing Epidemiology of Methicillin-Resistant Staphylococcus aureus in the United States: A National Observational Study. American Journal of Epidemiology, 2013, 177, 666-674.	3.4	128
75	Human movement data for malaria control and elimination strategic planning. Malaria Journal, 2012, 11, 205.	2.3	124
76	Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission. PLoS Computational Biology, 2013, 9, e1003327.	3.2	124
77	Benefits of using multiple first-line therapies against malaria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14216-14221.	7.1	122
78	Ranking of elimination feasibility between malaria-endemic countries. Lancet, The, 2010, 376, 1579-1591.	13.7	119
79	Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data. PLoS Computational Biology, 2016, 12, e1004846.	3.2	118
80	From The Cover: Strategic interactions in multi-institutional epidemics of antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3153-3158.	7.1	117
81	A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasites and Vectors, 2014, 7, 276.	2.5	116
82	A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots. ELife, 2014, 3, e02130.	6.0	115
83	Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malaria Journal, 2017, 16, 85.	2.3	112
84	Measures of Malaria Burden after Long-Lasting Insecticidal Net Distribution and Indoor Residual Spraying at Three Sites in Uganda: A Prospective Observational Study. PLoS Medicine, 2016, 13, e1002167.	8.4	111
85	How absolute is zero? An evaluation of historical and current definitions of malaria elimination. Malaria Journal, 2010, 9, 213.	2.3	107
86	Epidemiological patterns at multiple spatial scales: an 11-year study of a Triphragmium ulmariae- Filipendula ulmaria metapopulation. Journal of Ecology, 2003, 91, 890-903.	4.0	106
87	The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission. Malaria Journal, 2005, 4, 23.	2.3	106
88	Variation in Childhood Diarrheal Morbidity and Mortality in Africa, 2000–2015. New England Journal of Medicine, 2018, 379, 1128-1138.	27.0	106
89	Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years: an analysis of the Global Burden of Disease Study 2017. Lancet Infectious Diseases, The, 2020, 20, 37-59.	9.1	104
90	Plasmodium vivax Transmission in Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0004222.	3.0	102

#	Article	IF	CITATIONS
91	Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. The Lancet Global Health, 2017, 5, e680-e687.	6.3	102
92	An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malaria Journal, 2007, 6, 10.	2.3	101
93	Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure. ELife, 2018, 7, .	6.0	100
94	Integrating vector control across diseases. BMC Medicine, 2015, 13, 249.	5.5	98
95	Quantifying risks and interventions that have affected the burden of lower respiratory infections among children younger than 5 years: an analysis for the Global Burden of Disease Study 2017. Lancet Infectious Diseases, The, 2020, 20, 60-79.	9.1	95
96	Projected Benefits of Active Surveillance for Vancomycinâ€Resistant Enterococci in Intensive Care Units. Clinical Infectious Diseases, 2004, 38, 1108-1115.	5.8	94
97	Dynamics of Polymorphism in a Malaria Vaccine Antigen at a Vaccine-Testing Site in Mali. PLoS Medicine, 2007, 4, e93.	8.4	94
98	Urbanization and the global malaria recession. Malaria Journal, 2013, 12, 133.	2.3	94
99	A quantitative analysis of transmission efficiency versus intensity for malaria. Nature Communications, 2010, 1, 108.	12.8	91
100	Community-associated Methicillin-Resistant <i>Staphylococcus aureus</i> in Outpatients, United States, 1999–2006. Emerging Infectious Diseases, 2009, 15, 1925-30.	4.3	90
101	A Research Agenda for Malaria Eradication: Modeling. PLoS Medicine, 2011, 8, e1000403.	8.4	89
102	Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings. Scientific Reports, 2019, 9, 5151.	3.3	89
103	Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization. Journal of the Royal Society Interface, 2017, 14, 20170520.	3.4	86
104	Progress and Challenges in Infectious Disease Cartography. Trends in Parasitology, 2016, 32, 19-29.	3.3	85
105	Microbial Diversity of Biofilms in Dental Unit Water Systems. Applied and Environmental Microbiology, 2003, 69, 3412-3420.	3.1	84
106	Using parasite genetic and human mobility data to infer local and cross-border malaria connectivity in Southern Africa. ELife, 2019, 8, .	6.0	83
107	Predicting changing malaria risk after expanded insecticide-treated net coverage in Africa. Trends in Parasitology, 2009, 25, 511-516.	3.3	82
108	Mapping global variation in human mobility. Nature Human Behaviour, 2020, 4, 800-810.	12.0	82

#	Article	IF	CITATIONS
109	Predictive Spatial Dynamics and Strategic Planning for Raccoon Rabies Emergence in Ohio. PLoS Biology, 2005, 3, e88.	5.6	81
110	Identifying Groups at High Risk for Carriage of Antibiotic-Resistant Bacteria. Archives of Internal Medicine, 2006, 166, 580.	3.8	80
111	A sticky situation: the unexpected stability of malaria elimination. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120145.	4.0	80
112	The path of least resistance: aggressive or moderate treatment?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140566.	2.6	79
113	Agricultural Antibiotics and Human Health. PLoS Medicine, 2005, 2, e232.	8.4	77
114	Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytologist, 2014, 202, 901-910.	7.3	76
115	Molecular Epidemiology of O139 <i>Vibrio cholerae</i> : Mutation, Lateral Gene Transfer, and Founder Flush. Emerging Infectious Diseases, 2003, 9, 810-814.	4.3	74
116	GEOGRAPHICAL DISTRIBUTION AND RISK FACTORS ASSOCIATED WITH ENTERIC DISEASES IN VIETNAM. American Journal of Tropical Medicine and Hygiene, 2007, 76, 706-712.	1.4	74
117	Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nature Communications, 2012, 3, 674.	12.8	73
118	Co-Carriage Rates of Vancomycin-ResistantEnterococcusand Extended-Spectrum Beta-Lactamase-Producing Bacteria Among a Cohort of Intensive Care Unit Patients: Implications for an Active Surveillance Program. Infection Control and Hospital Epidemiology, 2004, 25, 105-108.	1.8	71
119	Economic incentives and mathematical models of disease. Environment and Development Economics, 2007, 12, 707-732.	1.5	71
120	Quantifying the Epidemiological Impact of Vector Control on Dengue. PLoS Neglected Tropical Diseases, 2016, 10, e0004588.	3.0	70
121	The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales. PLoS ONE, 2013, 8, e52971.	2.5	69
122	Dengue disease outbreak definitions are implicitly variable. Epidemics, 2015, 11, 92-102.	3.0	68
123	Defining the relationship between infection prevalence and clinical incidence of Plasmodium falciparum malaria. Nature Communications, 2015, 6, 8170.	12.8	67
124	Assessing risks for a pre-emergent pathogen: virginiamycin use and the emergence of streptogramin resistance in Enterococcus faecium. Lancet Infectious Diseases, The, 2003, 3, 241-249.	9.1	66
125	Potential Impact of Intermittent Preventive Treatment (IPT) on Spread of Drug-Resistant Malaria. PLoS Medicine, 2006, 3, e141.	8.4	66
126	A priori prediction of disease invasion dynamics in a novel environment. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 21-25.	2.6	65

#	Article	IF	CITATIONS
127	Assessing the role of long-distance translocation and spatial heterogeneity in the raccoon rabies epidemic in Connecticut. Preventive Veterinary Medicine, 2005, 71, 225-240.	1.9	65
128	Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a high-resolution spatiotemporal prediction. Malaria Journal, 2014, 13, 171.	2.3	65
129	Malaria burden and control in Bangladesh and prospects for elimination: an epidemiological and economic assessment. The Lancet Global Health, 2014, 2, e98-e105.	6.3	64
130	Clinically immune hosts as a refuge for drug-sensitive malaria parasites. Malaria Journal, 2008, 7, 67.	2.3	63
131	Big city, small world: density, contact rates, and transmission of dengue across Pakistan. Journal of the Royal Society Interface, 2015, 12, 20150468.	3.4	63
132	Ecological theory to enhance infectious disease control and public health policy. Frontiers in Ecology and the Environment, 2005, 3, 29-37.	4.0	62
133	Preventing the Reintroduction of Malaria in Mauritius: A Programmatic and Financial Assessment. PLoS ONE, 2011, 6, e23832.	2.5	62
134	Monte Carlo assessments of goodness-of-fit for ecological simulation models. Ecological Modelling, 2003, 164, 49-63.	2.5	60
135	Cholera in Haiti: Reproductive numbers and vaccination coverage estimates. Scientific Reports, 2013, 3, 997.	3.3	60
136	"One-Size-Fits-All� Optimizing Treatment Duration for Bacterial Infections. PLoS ONE, 2012, 7, e29838.	2.5	59
137	Malaria's Missing Number: Calculating the Human Component of R0 by a Within-Host Mechanistic Model of Plasmodium falciparum Infection and Transmission. PLoS Computational Biology, 2013, 9, e1003025.	3.2	59
138	Seasonality of Plasmodium falciparum transmission: a systematic review. Malaria Journal, 2015, 14, 343.	2.3	59
139	Mapping exclusive breastfeeding in Africa between 2000 and 2017. Nature Medicine, 2019, 25, 1205-1212.	30.7	59
140	Key strategies for reducing spread of avian influenza among commercial poultry holdings: lessons for transmission to humans. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2467-2475.	2.6	58
141	Endemicity response timelines for Plasmodium falciparum elimination. Malaria Journal, 2009, 8, 87.	2.3	57
142	The demographics of human and malaria movement and migration patterns in East Africa. Malaria Journal, 2013, 12, 397.	2.3	57
143	Mapping residual transmission for malaria elimination. ELife, 2015, 4, .	6.0	55
144	Conservation Implications of Host Use for Rare Parasitic Plants. Implicaciones del Uso de Hospederos en la Conservacion de Plantas Parasiticas Raras. Conservation Biology, 1997, 11, 839-848.	4.7	54

#	Article	IF	CITATIONS
145	Spatial Control of Rabies on Heterogeneous Landscapes. PLoS ONE, 2006, 1, e27.	2.5	53
146	Improving pandemic influenza risk assessment. ELife, 2014, 3, e03883.	6.0	53
147	Theory and data for simulating fine-scale human movement in an urban environment. Journal of the Royal Society Interface, 2014, 11, 20140642.	3.4	53
148	Impact of vector control interventions on malaria transmission intensity, outdoor vector biting rates and Anopheles mosquito species composition in Tororo, Uganda. Malaria Journal, 2019, 18, 445.	2.3	53
149	Membrane topology of a P-type ATPase. The MgtB magnesium transport protein of Salmonella typhimurium. Journal of Biological Chemistry, 1993, 268, 22469-79.	3.4	50
150	The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malaria Journal, 2013, 12, 437.	2.3	47
151	Spatial Heterogeneity, Host Movement and Mosquito-Borne Disease Transmission. PLoS ONE, 2015, 10, e0127552.	2.5	47
152	Pareto rules for malaria super-spreaders and super-spreading. Nature Communications, 2019, 10, 3939.	12.8	47
153	Optimally timing primaquine treatment to reduce Plasmodium falciparum transmission in low endemicity Thai-Myanmar border populations. Malaria Journal, 2009, 8, 159.	2.3	45
154	Modeling Within-Host Effects of Drugs on Plasmodium falciparum Transmission and Prospects for Malaria Elimination. PLoS Computational Biology, 2014, 10, e1003434.	3.2	45
155	Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5938-5943.	7.1	45
156	Prospective strategies to delay the evolution of anti-malarial drug resistance: weighing the uncertainty. Malaria Journal, 2010, 9, 217.	2.3	44
157	Animal growth promoters: to ban or not to ban?. International Journal of Antimicrobial Agents, 2004, 24, 205-212.	2.5	43
158	The Stability of Malaria Elimination. Science, 2013, 339, 909-910.	12.6	43
159	Malaria Transmission, Infection, and Disease following Sustained Indoor Residual Spraying of Insecticide in Tororo, Uganda. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1525-1533.	1.4	43
160	Will A Global Subsidy Of New Antimalarials Delay The Emergence Of Resistance And Save Lives?. Health Affairs, 2006, 25, 325-336.	5.2	42
161	The dynamics of mutations associated with anti-malarial drug resistance in Plasmodium falciparum. Trends in Parasitology, 2009, 25, 557-563.	3.3	42
162	A framework for assessing the feasibility of malaria elimination. Malaria Journal, 2010, 9, 322.	2.3	42

#	Article	IF	CITATIONS
163	Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malaria Journal, 2017, 16, 459.	2.3	42
164	Quantifying cross-border movements and migrations for guiding the strategic planning of malaria control and elimination. Malaria Journal, 2014, 13, 169.	2.3	41
165	Human mobility patterns and malaria importation on Bioko Island. Nature Communications, 2019, 10, 2332.	12.8	41
166	Coupling ecology and evolution: malaria and the S-gene across time scales. Mathematical Biosciences, 2004, 189, 1-19.	1.9	40
167	Characterizing and quantifying human movement patterns using GPS data loggers in an area approaching malaria elimination in rural southern Zambia. Royal Society Open Science, 2017, 4, 170046.	2.4	40
168	Mosquito Population Regulation and Larval Source Management in Heterogeneous Environments. PLoS ONE, 2013, 8, e71247.	2.5	39
169	Characterizing microscopic and submicroscopic malaria parasitaemia at three sites with varied transmission intensity in Uganda. Malaria Journal, 2016, 15, 470.	2.3	38
170	Spatiotemporal Analysis of Epizootic Raccoon Rabies Propagation in Connecticut, 1991–1995. Vector-Borne and Zoonotic Diseases, 2002, 2, 77-86.	1.5	37
171	GAMETOCYTEMIA IN PLASMODIUM VIVAX AND PLASMODIUM FALCIPARUM INFECTIONS. Journal of Parasitology, 2006, 92, 1281-1285.	0.7	37
172	Declining malaria in Africa: improving the measurement of progress. Malaria Journal, 2014, 13, 39.	2.3	37
173	A high-throughput method for quantifying alleles and haplotypes of the malaria vaccine candidate Plasmodium falciparum merozoite surface protein-1 19 kDa. Malaria Journal, 2006, 5, 31.	2.3	36
174	Chapter 1 Strain Theory of Malaria. Advances in Parasitology, 2008, 66, 1-46.	3.2	36
175	Spatial Dynamics and Molecular Ecology of North American Rabies. Journal of Heredity, 2005, 96, 253-260.	2.4	35
176	Adult vector control, mosquito ecology and malaria transmission. International Health, 2015, 7, 121-129.	2.0	34
177	Superinfection and the evolution of resistance to antimalarial drugs. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3834-3842.	2.6	33
178	Parasite sources and sinks in a patched Ross–Macdonald malaria model with human and mosquito movement: Implications for control. Mathematical Biosciences, 2016, 279, 90-101.	1.9	33
179	Inferences about spatiotemporal variation in dengue virus transmission are sensitive to assumptions about human mobility: a case study using geolocated tweets from Lahore, Pakistan. EPJ Data Science, 2018, 7, 16.	2.8	33
180	Greater Occipital Neuralgia: An Unusual Presenting Feature of Neurosyphilis. Headache, 1987, 27, 552-554.	3.9	31

#	Article	IF	CITATIONS
181	Identifying residual hotspots and mapping lower respiratory infection morbidity and mortality in African children from 2000 to 2017. Nature Microbiology, 2019, 4, 2310-2318.	13.3	31
182	An agent-based model of dengue virus transmission shows how uncertainty about breakthrough infections influences vaccination impact projections. PLoS Computational Biology, 2019, 15, e1006710.	3.2	31
183	Solving the Sisyphean Problem of Malaria in Zanzibar. Science, 2011, 332, 1384-1385.	12.6	30
184	Quantitative, model-based estimates of variability in the generation and serial intervals of Plasmodium falciparum malaria. Malaria Journal, 2016, 15, 490.	2.3	29
185	Travel patterns and demographic characteristics of malaria cases in Swaziland, 2010–2014. Malaria Journal, 2017, 16, 359.	2.3	29
186	Quantifying Heterogeneous Malaria Exposure and Clinical Protection in a Cohort of Ugandan Children. Journal of Infectious Diseases, 2016, 214, 1072-1080.	4.0	28
187	Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM) for malaria elimination. PLoS ONE, 2017, 12, e0187680.	2.5	28
188	Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies. American Journal of Tropical Medicine and Hygiene, 2015, 93, 28-41.	1.4	27
189	Comparing metapopulation dynamics of infectious diseases under different models of human movement. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
190	Exploring the spatiotemporal drivers of malaria elimination in Europe. Malaria Journal, 2016, 15, 122.	2.3	26
191	In-roads to the spread of antibiotic resistance: regional patterns of microbial transmission in northern coastal Ecuador. Journal of the Royal Society Interface, 2012, 9, 1029-1039.	3.4	25
192	malERA: An updated research agenda for combination interventions and modelling in malaria elimination and eradication. PLoS Medicine, 2017, 14, e1002453.	8.4	24
193	Taking Sharper Pictures of Malaria with CAMERAs: Combined Antibodies to Measure Exposure Recency Assays. American Journal of Tropical Medicine and Hygiene, 2018, 99, 1120-1127.	1.4	24
194	Model-based assessment of public health impact and cost-effectiveness of dengue vaccination following screening for prior exposure. PLoS Neglected Tropical Diseases, 2019, 13, e0007482.	3.0	23
195	Clobal database of matched Plasmodium falciparum and P. vivax incidence and prevalence records from 1985–2013. Scientific Data, 2015, 2, 150012.	5.3	22
196	Estimating the impact of city-wide Aedes aegypti population control: An observational study in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007255.	3.0	22
197	Fever in Patients with Mixed-Species Malaria. Clinical Infectious Diseases, 2006, 42, 1713-1718.	5.8	21
198	Efficiency of Household Reactive Case Detection for Malaria in Rural Southern Zambia: Simulations Based on Cross-Sectional Surveys from Two Epidemiological Settings. PLoS ONE, 2013, 8, e70972.	2.5	21

#	Article	IF	CITATIONS
199	Distribution of malaria exposure in endemic countries in Africa considering country levels of effective treatment. Malaria Journal, 2015, 14, 384.	2.3	21
200	Septic and nonseptic olecranon bursitis. Utility of the surface temperature probe in the early differentiation of septic and nonseptic cases. Archives of Internal Medicine, 1989, 149, 1581-1585.	3.8	21
201	Coâ€evolutionary hot and cold spots of selective pressure move in space and time. Journal of Ecology, 2011, 99, 634-641.	4.0	20
202	Associations between urbanicity and malaria at local scales in Uganda. Malaria Journal, 2015, 14, 374.	2.3	20
203	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. PLoS Computational Biology, 2020, 16, e1007446.	3.2	20
204	The Population Dynamics and Community Ecology of Root Hemiparasitic Plants. American Naturalist, 2000, 155, 13-23.	2.1	19
205	Should new antimalarial drugs be subsidized?. Journal of Health Economics, 2010, 29, 445-456.	2.7	19
206	Climate change, urbanization and disease: summer in the city Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 171-172.	1.8	19
207	Malaria genotyping for epidemiologic surveillance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6782-6783.	7.1	18
208	Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malaria Journal, 2021, 20, 138.	2.3	18
209	Heterogeneous exposure and hotspots for malaria vectors at three study sites in Uganda. Gates Open Research, 2018, 2, 32.	1.1	17
210	Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS Neglected Tropical Diseases, 2021, 15, e0009063.	3.0	16
211	A functional connectome: regulation of Wnt/TCF-dependent transcription by pairs of pathway activators. Molecular Cancer, 2015, 14, 206.	19.2	15
212	Spatio-temporal analysis of malaria vector density from baseline through intervention in a high transmission setting. Parasites and Vectors, 2016, 9, 637.	2.5	15
213	Morphometry of Hepatic Neoplasms and Altered Foci in the Mummichog, Fundulus heteroclitus. Toxicologic Pathology, 2004, 32, 375-383.	1.8	14
214	Molecular aspects of Mg2+ transport systems. Mineral and Electrolyte Metabolism, 1993, 19, 266-76.	1.1	13
215	Uncertainty in SARS epidemiology. Lancet, The, 2003, 362, 170-171.	13.7	12
216	The Role of Institutional Epidemiologic Weight in Guiding Infection Surveillance and Control in Community and Hospital Populations. Infection Control and Hospital Epidemiology, 2006, 27, 170-174.	1.8	12

#	Article	IF	CITATIONS
217	Defining the relationship between Plasmodium vivax parasite rate and clinical disease. Malaria Journal, 2015, 14, 191.	2.3	12
218	Characterising malaria connectivity using malaria indicator survey data. Malaria Journal, 2019, 18, 440.	2.3	12
219	A Multiplex Technology Platform for the Rapid Analysis of Clinically Actionable Genetic Alterations and Validation for BRAF p.V600E Detection in 1549 Cytologic and Histologic Specimens. Archives of Pathology and Laboratory Medicine, 2014, 138, 371-378.	2.5	11
220	Measuring the accuracy of gridded human population density surfaces: A case study in Bioko Island, Equatorial Guinea. PLoS ONE, 2021, 16, e0248646.	2.5	11
221	Estimating malaria transmission from humans to mosquitoes in a noisy landscape. Journal of the Royal Society Interface, 2015, 12, 20150478.	3.4	9
222	Synergy and timing: a concurrent mass medical campaign predicted to augment indoor residual spraying for malaria. Malaria Journal, 2019, 18, 160.	2.3	9
223	Identification and characterization of immature Anopheles and culicines (Diptera: Culicidae) at three sites of varying malaria transmission intensities in Uganda. Malaria Journal, 2020, 19, 221.	2.3	9
224	Medical and entomological malarial interventions, a comparison and synergy of two control measures using a Ross/Macdonald model variant and openmalaria simulation. Mathematical Biosciences, 2018, 300, 187-200.	1.9	8
225	Synergism from combinations of infection-blocking malaria vaccines. Malaria Journal, 2013, 12, 280.	2.3	7
226	Determination of sulfur dioxide by adsorption on a solid sorbent followed by ion chromatography analysis. AIHA Journal, 1980, 41, 485-488.	0.4	6
227	Experience―and ageâ€mediated oviposition behaviour in the yellow fever mosquito <i><scp>S</scp>tegomyia aegypti</i> (= <i><scp>A</scp>edes aegypti</i>). Medical and Veterinary Entomology, 2015, 29, 255-262.	1.5	6
228	Malaria outbreak in Riaba district, Bioko Island: lessons learned. Malaria Journal, 2020, 19, 277.	2.3	6
229	A New Test of a Theory about Old Mosquitoes. Trends in Parasitology, 2021, 37, 185-194.	3.3	6
230	Progress in Modelling Malaria Transmission. Advances in Experimental Medicine and Biology, 2010, 673, 1-12.	1.6	6
231	House design and risk of malaria, acute respiratory infection and gastrointestinal illness in Uganda: A cohort study. PLOS Global Public Health, 2022, 2, e0000063.	1.6	6
232	Radiologic chest CT findings from COVIDâ€19 in Orleans Parish, Louisiana. Echocardiography, 2020, 37, 628-631.	0.9	5
233	Quantifying malaria acquired during travel and its role in malaria elimination on Bioko Island. Malaria Journal, 2021, 20, 359.	2.3	5
234	RARE PLASMODIUM FALCIPARUM MEROZOITE SURFACE PROTEIN 1 19-KDA (MSP-119) HAPLOTYPES IDENTIFIED IN MALI USING HIGH-THROUGHPUT GENOTYPING METHODS. American Journal of Tropical Medicine and Hygiene, 2007, 76, 855-859.	1.4	5

#	Article	IF	CITATIONS
235	Short report: rare Plasmodium falciparum merozoite surface protein 1 19-kda (msp-1(19)) haplotypes identified in Mali using high-throughput genotyping methods. American Journal of Tropical Medicine and Hygiene, 2007, 76, 855-9.	1.4	5
236	Spatial Heterogeneity in Infectious Disease Epidemics. , 2005, , 137-164.		4
237	From puddles to planet: modeling approaches to vector-borne diseases at varying resolution and scale. Current Opinion in Insect Science, 2015, 10, 118-123.	4.4	4
238	Identification of a Novel Clinical Phenotype of Severe Malaria using a Network-Based Clustering Approach. Scientific Reports, 2018, 8, 12849.	3.3	4
239	Withinâ€household clustering of genetically related Plasmodium falciparum infections in a moderate transmission area of Uganda. Malaria Journal, 2021, 20, 68.	2.3	4
240	Real-time, spatial decision support to optimize malaria vector control: The case of indoor residual spraying on Bioko Island, Equatorial Guinea. , 2022, 1, e0000025.		3
241	Bioeconomic analysis of child-targeted subsidies for artemisinin combination therapies: a cost-effectiveness analysis. Journal of the Royal Society Interface, 2015, 12, 20141356.	3.4	2
242	Hilar asymmetry in endobronchial tuberculosis patients: An often-overlooked clue. International Journal of Infectious Diseases, 2019, 80, 80-83.	3.3	2
243	Performance of passive case detection for malaria surveillance: results from nine countries in Mesoamerica and the Dominican Republic. Malaria Journal, 2021, 20, 208.	2.3	2
244	On the importance of incentives in hospital infection control spending. Discovery Medicine, 2005, 5, 303-8.	0.5	2
245	Infection age as a predictor of epidemiological metrics for malaria. Malaria Journal, 2022, 21, 117.	2.3	2
246	Human Interventions on the Evolution of Host-Bacterium Interactions. , 2014, , 51-62.		1
247	Model citizen – Authors' reply. The Lancet Global Health, 2017, 5, e974.	6.3	1
248	Dynamics and control of antibiotic resistance in structured metapopulations. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 2006, , 213-237.	0.0	1
249	Heterogeneous exposure and hotspots for malaria vectors at three study sites in Uganda. Gates Open Research, 0, 2, 32.	1.1	1
250	The efficiency of respirator filters in a coke oven atmosphere. AIHA Journal, 1979, 40, 1030-1038.	0.4	1
251	Respiratory responses to nitrogen dioxide inhalation subtitle: Nitrogen dioxide. Journal of Environmental Science and Health Part A, Environmental Science and Engineering, 1984, 19, 417-431.	0.1	0
252	Mixed‧pecies Malaria Infections in Travelers. Journal of Travel Medicine, 2006, 13, 123.1-123.	3.0	0

#	Article	IF	CITATIONS
253	Selection of interdependent choice of 2 complementary resources. Behavioral Ecology, 2014, 25, 35-43.	2.2	0
254	Should New Antimalarial Drugs Be Subsidized?. SSRN Electronic Journal, 0, , .	0.4	0
255	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
256	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
257	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
258	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
259	Current dichotomous metrics obscure trends in severe and extreme child growth failure. Science Advances, 2022, 8, .	10.3	0