Shu-ichiro Inutsuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9272287/publications.pdf

Version: 2024-02-01

50276 60623 7,930 171 46 81 citations h-index g-index papers 176 176 176 4347 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY. Astrophysical Journal Letters, 2012, 748, L22.	8.3	309
2	An Origin of Supersonic Motions in Interstellar Clouds. Astrophysical Journal, 2001, 564, L97-L100.	4.5	297
3	Self-similar solutions and the stability of collapsing isothermal filaments. Astrophysical Journal, 1992, 388, 392.	4.5	260
4	Making the Corona and the Fast Solar Wind: A Self-consistent Simulation for the Low-Frequency Alfvén Waves from the Photosphere to 0.3 AU. Astrophysical Journal, 2005, 632, L49-L52.	4.5	228
5	DISK WINDS DRIVEN BY MAGNETOROTATIONAL INSTABILITY AND DISPERSAL OF PROTOPLANETARY DISKS. Astrophysical Journal, 2009, 691, L49-L54.	4.5	213
6	DIRECT IMAGING OF FINE STRUCTURES IN GIANT PLANET-FORMING REGIONS OF THE PROTOPLANETARY DISK AROUND AB AURIGAE. Astrophysical Journal Letters, 2011, 729, L17.	8.3	205
7	TOWARD UNDERSTANDING THE COSMIC-RAY ACCELERATION AT YOUNG SUPERNOVA REMNANTS INTERACTING WITH INTERSTELLAR CLOUDS: POSSIBLE APPLICATIONS TO RX J1713.7–3946. Astrophysical Journal, 2012, 744, 71.	4.5	192
8	Reformulation of Smoothed Particle Hydrodynamics with Riemann Solver. Journal of Computational Physics, 2002, 179, 238-267.	3.8	172
9	TURBULENCE AND MAGNETIC FIELD AMPLIFICATION IN SUPERNOVA REMNANTS: INTERACTIONS BETWEEN A STRONG SHOCK WAVE AND MULTIPHASE INTERSTELLAR MEDIUM. Astrophysical Journal, 2009, 695, 825-833.	4.5	164
10	The formation and destruction of molecular clouds and galactic star formation. Astronomy and Astrophysics, 2015, 580, A49.	5.1	160
11	PROTOPLANETARY DISK WINDS VIA MAGNETOROTATIONAL INSTABILITY: FORMATION OF AN INNER HOLE AND A CRUCIAL ASSIST FOR PLANET FORMATION. Astrophysical Journal, 2010, 718, 1289-1304.	4.5	151
12	TWO-COMPONENT SECULAR GRAVITATIONAL INSTABILITY IN A PROTOPLANETARY DISK: A POSSIBLE MECHANISM FOR CREATING RING-LIKE STRUCTURES. Astrophysical Journal, 2014, 794, 55.	4.5	151
13	Solar winds driven by nonlinear low-frequency Alfv $ ilde{A}$ ©n waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds. Journal of Geophysical Research, 2006, 111, .	3.3	135
14	FORMATION PROCESS OF THE CIRCUMSTELLAR DISK: LONG-TERM SIMULATIONS IN THE MAIN ACCRETION PHASE OF STAR FORMATION. Astrophysical Journal, 2010, 724, 1006-1020.	4.5	133
15	Local Enhancement of the Surface Density in the Protoplanetary Ring Surrounding HD 142527. Publication of the Astronomical Society of Japan, 2013, 65, .	2.5	129
16	The Role of Magnetic Field in Molecular Cloud Formation and Evolution. Frontiers in Astronomy and Space Sciences, 2019, 6, .	2.8	129
17	Effect of Magnetic Braking on Circumstellar Disk Formation in a Strongly Magnetized Cloud. Publication of the Astronomical Society of Japan, 2011, 63, 555-573.	2.5	128
18	RECURRENT PLANET FORMATION AND INTERMITTENT PROTOSTELLAR OUTFLOWS INDUCED BY EPISODIC MASS ACCRETION. Astrophysical Journal, 2011, 729, 42.	4.5	127

#	Article	IF	CITATIONS
19	A DETAILED STUDY OF THE MOLECULAR AND ATOMIC GAS TOWARD THE γ-RAY SUPERNOVA REMNANT RX J1713.7–3946: SPATIAL TeV γ-RAY AND INTERSTELLAR MEDIUM GAS CORRESPONDENCE. Astrophysical Journal 2012, 746, 82.	, 4.5	124
20	A STATISTICAL ANALYSIS OF SEEDS AND OTHER HIGH-CONTRAST EXOPLANET SURVEYS: MASSIVE PLANETS OR LOW-MASS BROWN DWARFS?. Astrophysical Journal, 2014, 794, 159.	4.5	124
21	FORMATION OF TURBULENT AND MAGNETIZED MOLECULAR CLOUDS VIA ACCRETION FLOWS OF H I CLOUDS. Astrophysical Journal, 2012, 759, 35.	4.5	123
22	BIMODALITY OF CIRCUMSTELLAR DISK EVOLUTION INDUCED BY THE HALL CURRENT. Astrophysical Journal Letters, 2015, 810, L26.	8.3	116
23	EMERGENCE OF PROTOPLANETARY DISKS AND SUCCESSIVE FORMATION OF GASEOUS PLANETS BY GRAVITATIONAL INSTABILITY. Astrophysical Journal Letters, 2010, 718, L58-L62.	8.3	107
24	Effects of Ohmic and ambipolar diffusion on formation and evolution of first cores, protostars, and circumstellar discs. Monthly Notices of the Royal Astronomical Society, 2015, 452, 278-288.	4.4	102
25	The Field Condition: A New Constraint on Spatial Resolution in Simulations of the Nonlinear Development of Thermal Instability. Astrophysical Journal, 2004, 602, L25-L28.	4.5	97
26	MAGNETOHYDRODYNAMIC SIMULATIONS OF GLOBAL ACCRETION DISKS WITH VERTICAL MAGNETIC FIELDS. Astrophysical Journal, 2014, 784, 121.	4.5	96
27	AN ORIGIN OF MULTIPLE RING STRUCTURE AND HIDDEN PLANETS IN HL TAU: A UNIFIED PICTURE BY SECULAR GRAVITATIONAL INSTABILITY. Astronomical Journal, 2016, 152, 184.	4.7	96
28	Saturation and Thermalization of the Magnetorotational Instability: Recurrent Channel Flows and Reconnections. Astrophysical Journal, 2001, 561, L179-L182.	4.5	96
29	Conditions for circumstellar disc formation: effects of initial cloud configuration and sink treatment. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2278-2306.	4.4	95
30	TWO-FLUID MAGNETOHYDRODYNAMICS SIMULATIONS OF CONVERGING H I FLOWS IN THE INTERSTELLAR MEDIUM. II. ARE MOLECULAR CLOUDS GENERATED DIRECTLY FROM A WARM NEUTRAL MEDIUM?. Astrophysical Journal, 2009, 704, 161-169.	4.5	90
31	Self-sustained Ionization and Vanishing Dead Zones in Protoplanetary Disks. Astrophysical Journal, 2005, 628, L155-L158.	4.5	80
32	Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity. Astrophysical Journal, 2017, 840, 32.	4.5	79
33	First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt. Astrophysical Journal, 2017, 842, 66.	4.5	79
34	The Molecular Cloud Lifecycle. Space Science Reviews, 2020, 216, 50.	8.1	77
35	A revised condition for self-gravitational fragmentation of protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3597-3612.	4.4	74
36	A Saturation Mechanism of Magnetorotational Instability Due to Ohmic Dissipation. Astrophysical Journal, 1998, 506, L57-L60.	4.5	73

#	Article	IF	Citations
37	STAR-FORMING DENSE CLOUD CORES IN THE TeV GAMMA-RAY SNR RX J1713.7–3946. Astrophysical Journal, 2010, 724, 59-68.	4.5	68
38	The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	68
39	ON THE VIABILITY OF THE MAGNETOROTATIONAL INSTABILITY IN CIRCUMPLANETARY DISKS. Astrophysical Journal, 2014, 785, 101.	4.5	62
40	The First Jets in the Universe: Protostellar Jets from the First Stars. Astrophysical Journal, 2006, 647, L1-L4.	4.5	57
41	Effects of radiative transfer on the structure of self-gravitating discs, their fragmentation and the evolution of the fragments. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1175-1190.	4.4	57
42	The impact of the Hall effect during cloud core collapse: Implications for circumstellar disk evolution. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	57
43	DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES. Astrophysical Journal, 2016, 821, 3.	4.5	56
44	Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements. Astrophysical Journal, 2018, 861, 65.	4.5	51
45	Kelvin-Helmholtz instabilities with Godunov smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1165-1174.	4.4	49
46	Gas accretion onto a protoplanet and formation of a gas giant planet. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	49
47	Circumstellar Disks and Outflows in Turbulent Molecular Cloud Cores: Possible Formation Mechanism for Misaligned Systems. Astrophysical Journal, 2017, 839, 69.	4.5	49
48	ALMA OBSERVATIONS OF A HIGH-DENSITY CORE IN TAURUS: DYNAMICAL GAS INTERACTION AT THE POSSIBLE SITE OF A MULTIPLE STAR FORMATION. Astrophysical Journal Letters, 2014, 789, L4.	8.3	47
49	A First Look at BISTRO Observations of the ï•Oph-A core. Astrophysical Journal, 2018, 859, 4.	4.5	46
50	Present-day star formation: From molecular cloud cores to protostars and protoplanetary disks. Progress of Theoretical and Experimental Physics, 2012, 2012, .	6.6	45
51	NON-THERMAL X-RAYS AND INTERSTELLAR GAS TOWARD THE γ-RAY SUPERNOVA REMNANT RX J1713.7–3946 EVIDENCE FOR X-RAY ENHANCEMENT AROUND CO AND H I CLUMPS. Astrophysical Journal, 2013, 778, 59.	: 4.5	45
52	The Mass Function of Molecular Cloud Cores. Astrophysical Journal, 2001, 559, L149-L152.	4.5	44
53	Revised Description of Dust Diffusion and a New Instability Creating Multiple Rings in Protoplanetary Disks. Astrophysical Journal, 2019, 881, 53.	4.5	44
54	Smoothed particle magnetohydrodynamics with a Riemann solver and the method of characteristics. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1668-1688.	4.4	43

#	Article	IF	CITATIONS
55	A SEMI-ANALYTICAL DESCRIPTION FOR THE FORMATION AND GRAVITATIONAL EVOLUTION OF PROTOPLANETARY DISKS. Astrophysical Journal, 2013, 770, 71.	4.5	43
56	A DETAILED STUDY OF NON-THERMAL X-RAY PROPERTIES AND INTERSTELLAR GAS TOWARD THE γ-RAY SUPERNOVA REMNANT RX J1713.7–3946. Astrophysical Journal, 2015, 799, 175.	4.5	42
57	How Do Stars Gain Their Mass? A JCMT/SCUBA-2 Transient Survey of Protostars in Nearby Star-forming Regions. Astrophysical Journal, 2017, 849, 43.	4.5	42
58	Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70. Astrophysical Journal, 2018, 858, 112.	4.5	42
59	JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146. Astrophysical Journal, 2019, 876, 42.	4.5	42
60	FORMATION OF H i CLOUDS IN SHOCK-COMPRESSED INTERSTELLAR MEDIUM: PHYSICAL ORIGIN OF ANGULAR CORRELATION BETWEEN FILAMENTARY STRUCTURE AND MAGNETIC FIELD. Astrophysical Journal, 2016, 833, 10.	4.5	41
61	Dust polarized emission observations of NGC 6334. Astronomy and Astrophysics, 2021, 647, A78.	5.1	41
62	The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333. Astrophysical Journal, 2020, 899, 28.	4.5	39
63	FIRST DIRECT SIMULATION OF BROWN DWARF FORMATION IN A COMPACT CLOUD CORE. Astrophysical Journal, 2009, 699, L157-L160.	4.5	38
64	ATMOSPHERIC ESCAPE BY MAGNETICALLY DRIVEN WIND FROM GASEOUS PLANETS. Astrophysical Journal, 2014, 792, 18.	4.5	38
65	The JCMT BISTRO Survey: The Magnetic Field in the Starless Core <i>j\'\ /i> Ophiuchus C. Astrophysical Journal, 2019, 877, 43.</i>	4.5	38
66	INTERDEPENDENCE OF ELECTRIC DISCHARGE AND MAGNETOROTATIONAL INSTABILITY IN PROTOPLANETARY DISKS. Astrophysical Journal, 2012, 760, 56.	4.5	37
67	The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region. Astrophysical Journal, 2019, 877, 88.	4.5	37
68	Formation, orbital and thermal evolution, and survival of planetary-mass clumps in the early phase of circumstellar disc evolution. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1667-1673.	4.4	36
69	<i>N</i> -BODY SIMULATION OF PLANETESIMAL FORMATION THROUGH GRAVITATIONAL INSTABILITY OF A DUST LAYER IN LAMINAR GAS DISK. Astrophysical Journal, 2010, 719, 1021-1031.	4.5	35
70	Significant gas-to-dust ratio asymmetry and variation in the disk of HDÂ142527 and the indication of gas depletion. Publication of the Astronomical Society of Japan, 2015, 67 , .	2.5	35
71	Molecular filament formation and filament–cloud interaction: Hints from Nobeyama 45 m telescope observations. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	35
72	Dispersal of protoplanetary discs by the combination of magnetically driven and photoevaporative winds. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3849-3858.	4.4	34

#	Article	IF	CITATIONS
73	STOCHASTIC PARTICLE ACCELERATION IN TURBULENCE GENERATED BY MAGNETOROTATIONAL INSTABILITY. Astrophysical Journal, 2016, 822, 88.	4.5	30
74	Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks. Astrophysical Journal, 2017, 836, 175.	4.5	29
75	The Origin of the Stellar Mass Distribution and Multiplicity. Space Science Reviews, 2020, 216, 1.	8.1	29
76	Secular Gravitational Instability of Drifting Dust in Protoplanetary Disks: Formation of Dusty Rings without Significant Gas Substructures. Astrophysical Journal, 2020, 900, 182.	4.5	29
77	Does Misalignment between Magnetic Field and Angular Momentum Enhance or Suppress Circumstellar Disk Formation?. Astrophysical Journal, 2018, 868, 22.	4.5	28
78	SECULAR GRAVITATIONAL INSTABILITY OF A DUST LAYER IN SHEAR TURBULENCE. Astrophysical Journal, 2012, 746, 35.	4.5	27
79	Non-linear development of secular gravitational instability in protoplanetary disks. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	27
80	"Ashfall―Induced by Molecular Outflow in Protostar Evolution. Astrophysical Journal Letters, 2021, 920, L35.	8.3	27
81	REVEALING A DETAILED MASS DISTRIBUTION OF A HIGH-DENSITY CORE MC27/L1521F IN TAURUS WITH ALMA. Astrophysical Journal, 2016, 826, 26.	4.5	26
82	Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system's terrestrial planets. Astronomy and Astrophysics, 2015, 579, A65.	5.1	26
83	Conditions for circumstellar disc formation – II. Effects of initial cloud stability and mass accretion rate. Monthly Notices of the Royal Astronomical Society, 2016, 463, 4246-4267.	4.4	25
84	ALMA Reveals a Misaligned Inner Gas Disk inside the Large Cavity of a Transitional Disk. Astrophysical Journal Letters, 2018, 868, L3.	8.3	25
85	Warm CO Gas Generated by Possible Turbulent Shocks in a Low-mass Star-forming Dense Core in Taurus. Astrophysical Journal, 2018, 862, 8.	4.5	25
86	FOREST Unbiased Galactic Plane Imaging Survey with the Nobeyama 45 m telescope (FUGIN). V. Dense gas mass fraction of molecular gas in the Galactic plane. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	24
87	The Role of Ambipolar Diffusion in the Formation Process of Moderately Magnetized Diffuse Clouds. Astrophysical Journal, 2007, 658, L99-L102.	4.5	23
88	An origin of arc structures deeply embedded in dense molecular cloud cores. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 449, L123-L127.	3.3	23
89	FRagmentation and Evolution of Dense Cores Judged by ALMA (FREJA). I. Overview: Inner â ¹ /41000 au Structures of Prestellar/Protostellar Cores in Taurus. Astrophysical Journal, 2020, 899, 10.	4.5	23
90	An explicit scheme for ohmic dissipation with smoothed particle magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2593-2599.	4.4	22

#	Article	IF	Citations
91	ON THE RADIUS ANOMALY OF HOT JUPITERS: REEXAMINATION OF THE POSSIBILITY AND IMPACT OF LAYERED CONVECTION. Astrophysical Journal, 2015, 815, 78.	4.5	22
92	Early Evolution of Disk, Outflow, and Magnetic Field of Young Stellar Objects: Impact of Dust Model. Astrophysical Journal, 2020, 896, 158.	4.5	22
93	The JCMT Transient Survey: Four-year Summary of Monitoring the Submillimeter Variability of Protostars. Astrophysical Journal, 2021, 920, 119.	4.5	22
94	An extension of Godunov SPH II: Application to elastic dynamics. Journal of Computational Physics, 2017, 333, 78-103.	3.8	21
95	The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry. Astrophysical Journal Letters, 2021, 912, L27.	8.3	21
96	Classification of Filament Formation Mechanisms in Magnetized Molecular Clouds. Astrophysical Journal, 2021, 916, 83.	4.5	21
97	THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS. Astrophysical Journal, 2015, 800, 47.	4.5	19
98	Atmospheric Electrification in Dusty, Reactive Gases in the Solar System and Beyond. Surveys in Geophysics, 2016, 37, 705-756.	4.6	19
99	FAUST. II. Discovery of a Secondary Outflow in IRAS 15398â°3359: Variability in Outflow Direction during the Earliest Stage of Star Formation?. Astrophysical Journal, 2021, 910, 11.	4.5	19
100	A Higher-Order Godunov Scheme for Non-Ideal Magnetohydrodynamics. Astrophysics and Space Science Library, 1999, , 383-386.	2.7	19
101	3D magnetic-field morphology of the Perseus molecular cloud. Astronomy and Astrophysics, 2022, 660, A97.	5.1	19
102	Outflows Driven by Giant Protoplanets. Astrophysical Journal, 2006, 649, L129-L132.	4.5	18
103	Toward understanding the origin of asteroid geometries. Astronomy and Astrophysics, 2018, 620, A167.	5.1	18
104	Possible Evidence for Cosmic-Ray Acceleration in the Type Ia SNR RCW 86: Spatial Correlation between TeV Gamma-Rays and Interstellar Atomic Protons. Astrophysical Journal, 2019, 876, 37.	4.5	18
105	An Origin for the Angular Momentum of Molecular Cloud Cores: A Prediction from Filament Fragmentation. Astrophysical Journal, 2019, 881, 11.	4.5	17
106	The JCMT BISTRO Survey: Alignment between Outflows and Magnetic Fields in Dense Cores/Clumps. Astrophysical Journal, 2021, 907, 33.	4.5	17
107	SELF-SUSTAINED TURBULENCE WITHOUT DYNAMICAL FORCING: A TWO-DIMENSIONAL STUDY OF A BISTABLE INTERSTELLAR MEDIUM. Astrophysical Journal, 2014, 784, 115.	4.5	16
108	The diverse lives of massive protoplanets in self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3110-3135.	4.4	16

#	Article	IF	CITATIONS
109	Observations of Magnetic Fields Surrounding LkHÎ \pm 101 Taken by the BISTRO Survey with JCMT-POL-2. Astrophysical Journal, 2021, 908, 10.	4.5	16
110	ALMA CO Observations of Gamma-Ray Supernova Remnant N132D in the Large Magellanic Cloud: Possible Evidence for Shocked Molecular Clouds Illuminated by Cosmic-Ray Protons. Astrophysical Journal, 2020, 902, 53.	4.5	16
111	B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. Astrophysical Journal, 2022, 926, 163.	4.5	16
112	An extension of Godunov SPH: Application to negative pressure media. Journal of Computational Physics, 2016, 308, 171-197.	3.8	15
113	A Detached Protostellar Disk around a â^1⁄40.2 M _⊙ Protostar in a Possible Site of a Multiple Star Formation in a Dynamical Environment in Taurus. Astrophysical Journal, 2017, 849, 101.	4.5	15
114	Star formation induced by cloud–cloud collisions and galactic giant molecular cloud evolution. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	15
115	The Exchange of Mass and Angular Momentum in the Impact Event of Ice Giant Planets: Implications for the Origin of Uranus. Astronomical Journal, 2019, 157, 13.	4.7	15
116	Distribution and kinematics of 26Al in the Galactic disc. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2442-2454.	4.4	15
117	OMC-1 dust polarization in ALMA Band 7: diagnosing grain alignment mechanisms in the vicinity of Orion Source I. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3414-3433.	4.4	15
118	Conditions for Justifying Single-fluid Approximation for Charged and Neutral Dust Fluids and a Smoothed Particle Magnetohydrodynamics Method for Dust–Gas Mixture. Astrophysical Journal, 2021, 913, 148.	4.5	15
119	SPH simulations for shape deformation of rubble-pile asteroids through spinup: The challenge for making top-shaped asteroids Ryugu and Bennu. Icarus, 2021, 365, 114505.	2.5	15
120	Coagulation Instability in Protoplanetary Disks: A Novel Mechanism Connecting Collisional Growth and Hydrodynamical Clumping of Dust Particles. Astrophysical Journal, 2021, 923, 34.	4.5	15
121	Dynamical Formation of Dark Molecular Hydrogen Clouds around Diffuse HiiRegions. Astrophysical Journal, 2007, 664, 363-376.	4.5	14
122	The origin of rotation profiles in star-forming clouds. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1390-1399.	4.4	14
123	Discovery of Shocked Molecular Clouds Associated with the Shell-type Supernova Remnant RX J0046.5a° 7308 in the Small Magellanic Cloud. Astrophysical Journal, 2019, 881, 85.	4.5	14
124	ALMA CO Observations of Supernova Remnant N63A in the Large Magellanic Cloud: Discovery of Dense Molecular Clouds Embedded within Shock-ionized and Photoionized Nebulae. Astrophysical Journal, 2019, 873, 40.	4.5	14
125	ALMA Observations of Massive Clouds in the Central Molecular Zone: Ubiquitous Protostellar Outflows. Astrophysical Journal, 2021, 909, 177.	4.5	14
126	ALMA CO Observations of the Gamma-Ray Supernova Remnant RX J1713.7–3946: Discovery of Shocked Molecular Cloudlets and Filaments at 0.01 pc Scales. Astrophysical Journal Letters, 2020, 904, L24.	8.3	14

#	Article	IF	Citations
127	Orion A's complete 3D magnetic field morphology. Astronomy and Astrophysics, 2022, 660, L7.	5.1	14
128	ALMA Observations of Supernova Remnant N49 in the LMC. I. Discovery of CO Clumps Associated with X-Ray and Radio Continuum Shells. Astrophysical Journal, 2018, 863, 55.	4.5	13
129	The JCMT BISTRO Survey: An 850/450 $\hat{l}\frac{1}{4}$ m Polarization Study of NGC 2071IR in Orion B. Astrophysical Journal, 2021, 918, 85.	4.5	13
130	GRAVITATIONAL FRAGMENTATION OF EXPANDING SHELLS. II. THREE-DIMENSIONAL SIMULATIONS. Astrophysical Journal, 2011, 733, 17.	4.5	12
131	GRAVITATIONAL FRAGMENTATION OF EXPANDING SHELLS. I. LINEAR ANALYSIS. Astrophysical Journal, 2011, 733, 16.	4.5	12
132	The Early Stage of Molecular Cloud Formation by Compression of Two-phase Atomic Gases. Astrophysical Journal, 2019, 873, 6.	4.5	12
133	A centrally concentrated sub-solar-mass starless core in the Taurus L1495 filamentary complex. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	11
134	Collisional elongation: Possible origin of extremely elongated shape of 1l/†Oumuamua. Icarus, 2019, 328, 14-22.	2.5	11
135	Diffusion of cosmic rays in a multiphase interstellar medium swept-up by a supernova remnant blast wave. Astroparticle Physics, 2016, 73, 1-7.	4.3	10
136	Electron Heating and Saturation of Self-regulating Magnetorotational Instability in Protoplanetary Disks. Astrophysical Journal, 2017, 849, 86.	4.5	8
137	A Low-velocity Bipolar Outflow from a Deeply Embedded Object in Taurus Revealed by the Atacama Compact Array. Astrophysical Journal Letters, 2020, 899, L10.	8.3	8
138	Toward Understanding the Formation of Molecular Clouds. Astrophysics and Space Science, 2002, 281, 67-70.	1.4	7
139	Structure of dynamical condensation fronts in the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3638-3645.	4.4	7
140	Formation and evolution of the local interstellar environment: combined constraints from nucleosynthetic and X-ray data. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5532-5540.	4.4	7
141	Bimodal Behavior and Convergence Requirement in Macroscopic Properties of the Multiphase Interstellar Medium Formed by Atomic Converging Flows. Astrophysical Journal, 2020, 905, 95.	4.5	7
142	DEVELOPMENT OF A METHOD FOR THE OBSERVATION OF LIGHTNING IN PROTOPLANETARY DISKS USING ION LINES. Astrophysical Journal, 2015, 815, 84.	4.5	6
143	The Effects of Cosmic-Ray Diffusion and Radiative Cooling on the Galactic Wind of the Milky Way. Astrophysical Journal, 2022, 926, 8.	4.5	6
144	Radiation-hydrodynamic Simulations of Spherical Protostellar Collapse for Very Low-mass Objects. Astrophysical Journal, 2018, 869, 179.	4.5	5

#	Article	IF	Citations
145	Two-component Magnetic Field along the Line of Sight to the Perseus Molecular Cloud: Contribution of the Foreground Taurus Molecular Cloud. Astrophysical Journal, 2021, 914, 122.	4.5	5
146	ATMOSPHERIC ESCAPE BY MAGNETICALLY DRIVEN WIND FROM GASEOUS PLANETS. II. EFFECTS OF MAGNETIC DIFFUSION. Astrophysical Journal, 2015, 809, 125.	4.5	4
147	Faint warm debris disks around nearby bright stars explored by AKARI and IRSF. Astronomy and Astrophysics, 2017, 601, A72.	5.1	4
148	High-resolution simulations of catastrophic disruptions: Resultant shape distributions. Planetary and Space Science, 2020, 181, 104807.	1.7	4
149	The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333. Astrophysical Journal Letters, 2021, 923, L9.	8.3	4
150	A Fast and Accurate Method of Radiation Hydrodynamics Calculation in Spherical Symmetry. Astronomical Journal, 2018, 155, 253.	4.7	3
151	The Generalized Nonlinear Ohm's Law: How a Strong Electric Field Influences Nonideal MHD Effects in Dusty Protoplanetary Disks. Astrophysical Journal, 2019, 878, 133.	4.5	3
152	Effects of Magnetic Field Orientations in Dense Cores on Gas Kinematics in Protostellar Envelopes. Astrophysical Journal, 2022, 930, 67.	4.5	3
153	Dust evolution in photoevaporating protoplanetary disks. Proceedings of the International Astronomical Union, 2006, 2, 455-455.	0.0	2
154	EXTREMELY BRIGHT SUBMILLIMETER GALAXIES BEYOND THE LUPUS-I STAR-FORMING REGION. Astrophysical Journal, 2015, 808, 121.	4.5	2
155	Properties of an accretion disc with a power-law stress–pressure relationship. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5170-5179.	4.4	2
156	Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations. Journal of Physics: Conference Series, 2017, 837, 012009.	0.4	1
157	Constraints on the formation of brown dwarfs by turbulent compression. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2644-2649.	4.4	1
158	Associated Molecular and Atomic Clouds with X-Ray Shell of Superbubble 30 Doradus C in the LMC. Astrophysical Journal, 2021, 918, 36.	4.5	1
159	The Local Mass Conservation in SPH. Symposium - International Astronomical Union, 2003, 208, 411-412.	0.1	O
160	Synthetic observations of turbulent flows in diffuse multiphase interstellar medium. Proceedings of the International Astronomical Union, 2006, 2, 499-499.	0.0	0
161	The effect of poloidal magnetic field on type I planetary migration. Proceedings of the International Astronomical Union, 2007, 3, 401-406.	0.0	O
162	Multi-Phase Dynamics of Magnetized Interstellar Medium. Proceedings of the International Astronomical Union, 2009, 5, 444-445.	0.0	0

#	Article	IF	CITATIONS
163	Stability properties of phase transition layers in the diffuse ISM revisited. Proceedings of the International Astronomical Union, 2012, 10, 611-611.	0.0	0
164	Cosmic-ray acceleration at young and middle-aged supernova remnants interacting with interstellar clouds. , 2012, , .		0
165	An efficient dissipation mechanism of magnetic field by turbulence. , 2012, , .		0
166	The Formation and Destruction of Molecular Clouds and Galactic Star Formation. Proceedings of the International Astronomical Union, 2015, 11, 61-68.	0.0	0
167	ALMA Observations of a High-density Core in Taurus: Dynamical Gas Interaction at the Possible Site of a Multiple Star Formation. Proceedings of the International Astronomical Union, 2015, 11, .	0.0	0
168	The impact of non-ideal effects on the circumstellar disk evolution and their observational signatures. Proceedings of the International Astronomical Union, 2018, 14, 116-116.	0.0	0
169	The role of magnetic field in the formation and evolution of filamentary molecular clouds. Proceedings of the International Astronomical Union, 2018, 14, 100-100.	0.0	0
170	Dynamical Model Based on Hydrodynamics for Relativistic Heavy-Ion Collisions. , 2014, , .		0
171	On high-order numerical schemes for viscous relativistic hydrodynamics through the Kelvin–Helmholtz instability. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0