
Stefano Bonaglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9272017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biology, 2017, 23, 2179-2196.	9.5	294
2	Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2021, 2, 307-323.	29.7	210
3	Meiofauna increases bacterial denitrification in marine sediments. Nature Communications, 2014, 5, 5133.	12.8	182
4	Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. ISME Journal, 2015, 9, 1456-1466.	9.8	126
5	Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns. Biogeochemistry, 2014, 119, 139-160.	3.5	68
6	Effect of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism. Marine Ecology - Progress Series, 2013, 482, 43-55.	1.9	61
7	Denitrification and DNRA at the Baltic Sea oxic-anoxic interface: Substrate spectrum and kinetics. Limnology and Oceanography, 2016, 61, 1900-1915.	3.1	60
8	Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobic conditions in oil-polluted sediments. Chemosphere, 2020, 248, 126023.	8.2	50
9	Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities. ISME Journal, 2019, 13, 1960-1974.	9.8	49
10	Active DNRA and denitrification in oxic hypereutrophic waters. Water Research, 2021, 194, 116954.	11.3	49
11	Methane fluxes from coastal sediments are enhanced by macrofauna. Scientific Reports, 2017, 7, 13145.	3.3	41
12	Transient bottom water oxygenation creates a niche for cable bacteria in longâ€ŧerm anoxic sediments of the Eastern Gotland Basin. Environmental Microbiology, 2018, 20, 3031-3041.	3.8	37
13	Short exposure to oxygen and sulfide alter nitrification, denitrification, and DNRA activity in seasonally hypoxic estuarine sediments. FEMS Microbiology Letters, 2019, 366, .	1.8	37
14	Capping with activated carbon reduces nutrient fluxes, denitrification and meiofauna in contaminated sediments. Water Research, 2019, 148, 515-525.	11.3	34
15	Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry, 2015, 126, 131-152.	3.5	33
16	Benthic nitrogen metabolism in a macrophyte meadow (Vallisneria spiralis L.) under increasing sedimentary organic matter loads. Biogeochemistry, 2015, 124, 387-404.	3.5	33
17	The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study. Biogeosciences, 2017, 14, 285-300.	3.3	33
18	Influence of Natural Oxygenation of Baltic Proper Deep Water on Benthic Recycling and Removal of Phosphorus, Nitrogen, Silicon and Carbon. Frontiers in Marine Science, 2017, 4, .	2.5	26

STEFANO BONAGLIA

#	Article	IF	CITATIONS
19	N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont. Scientific Reports, 2020, 10, 13966.	3.3	25
20	The effects of hydrological extremes on denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and mineralization in a coastal lagoon. Science of the Total Environment, 2020, 740, 140169.	8.0	22
21	Meiofauna improve oxygenation and accelerate sulfide removal in the seasonally hypoxic seabed. Marine Environmental Research, 2020, 159, 104968.	2.5	20
22	Sediment Remediation with New Composite Sorbent Amendments to Sequester Phosphorus, Organic Contaminants, and Metals. Environmental Science & Technology, 2021, 55, 11937-11947.	10.0	19
23	In situ incubations with the Gothenburg benthic chamber landers: Applications and quality control. Journal of Marine Systems, 2021, 214, 103475.	2.1	18
24	Influence of settling organic matter quantity and quality on benthic nitrogen cycling. Limnology and Oceanography, 2021, 66, 1882-1895.	3.1	18
25	The Effect of Chironomid Larvae on Nitrogen Cycling and Microbial Communities in Soft Sediments. Water (Switzerland), 2019, 11, 1931.	2.7	17
26	Physical Disturbance by Bottom Trawling Suspends Particulate Matter and Alters Biogeochemical Processes on and Near the Seafloor. Frontiers in Marine Science, 2021, 8, .	2.5	17
27	High throughput shotgun sequencing of eRNA reveals taxonomic and derived functional shifts across a benthic productivity gradient. Molecular Ecology, 2021, 30, 3023-3039.	3.9	16
28	Uncovering diversity and metabolic spectrum of animals in dead zone sediments. Communications Biology, 2020, 3, 106.	4.4	16
29	High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems. Global Change Biology, 2022, 28, 4308-4322.	9.5	16
30	Zebra Mussel Holobionts Fix and Recycle Nitrogen in Lagoon Sediments. Frontiers in Microbiology, 2020, 11, 610269.	3.5	15
31	In situ characterization of benthic fluxes and denitrification efficiency in a newly re-established mussel farm. Science of the Total Environment, 2021, 782, 146853.	8.0	15
32	Oxygenâ€deficient water zones in the Baltic Sea promote uncharacterized Hg methylating microorganisms in underlying sediments. Limnology and Oceanography, 2022, 67, 135-146.	3.1	15
33	Low Abundance of Methanotrophs in Sediments of Shallow Boreal Coastal Zones With High Water Methane Concentrations. Frontiers in Microbiology, 2020, 11, 1536.	3.5	14
34	Depicting Temporal, Functional, and Phylogenetic Patterns in Estuarine Diazotrophic Communities from Environmental DNA and RNA. Microbial Ecology, 2021, 81, 36-51.	2.8	14
35	Functional Performance of Three Invasive Marenzelleria Species Under Contrasting Ecological Conditions Within the Baltic Sea. Estuaries and Coasts, 2018, 41, 1766-1781.	2.2	12
36	Methane Emissions From Nordic Seagrass Meadow Sediments. Frontiers in Marine Science, 2022, 8, .	2.5	12

STEFANO BONAGLIA

#	Article	IF	CITATIONS
37	Sulfide oxidation in deep Baltic Sea sediments upon oxygenation and colonization by macrofauna. Marine Biology, 2019, 166, 1.	1.5	11
38	Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems. Communications Earth & Environment, 2022, 3, .	6.8	11
39	Enhanced benthic nitrous oxide and ammonium production after natural oxygenation of longâ€ŧerm anoxic sediments. Limnology and Oceanography, 2022, 67, 419-433.	3.1	10
40	Fueling of a marine-terrestrial ecosystem by a major seabird colony. Scientific Reports, 2020, 10, 15455.	3.3	9
41	Spatiotemporal patterns of N ₂ fixation in coastal waters derived from rate measurements and remote sensing. Biogeosciences, 2021, 18, 1857-1871.	3.3	9
42	Denitrification responses to increasing cadmium exposure in Baltic Sea sediments. Aquatic Toxicology, 2019, 217, 105328.	4.0	8
43	Organic Contaminant Mixture Significantly Changes Microbenthic Community Structure and Increases the Expression of PAH Degradation Genes. Frontiers in Environmental Science, 2020, 8, .	3.3	8
44	A bioturbator, a holobiont, and a vector: The multifaceted role of <i>Chironomus plumosus</i> in shaping N ycling. Freshwater Biology, 2021, 66, 1036-1048.	2.4	8
45	Cyanophage Diversity and Community Structure in Dead Zone Sediments. MSphere, 2021, 6, .	2.9	8
46	Partitioning benthic nitrogen cycle processes among three common macrofauna holobionts. Biogeochemistry, 2022, 157, 193-213.	3.5	7
47	A microsensorâ€based method for measuring respiration of individual nematodes. Methods in Ecology and Evolution, 2021, 12, 1841-1847.	5.2	4
48	Sediment Remediation Using Activated Carbon: Effects of Sorbent Particle Size and Resuspension on Sequestration of Metals and Organic Contaminants. Environmental Toxicology and Chemistry, 2022, , .	4.3	3
49	High methane emissions from an anoxic fjord driven by mixing and oxygenation. Limnology and Oceanography Letters, 0, , .	3.9	3