
Sarah W Bottjer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9271940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Responses to Song Playback Differ in Sleeping versus Anesthetized Songbirds. ENeuro, 2022, 9, ENEURO.0015-22.2022.	1.9	0
2	Developmentally regulated pathways for motor skill learning in songbirds. Journal of Comparative Neurology, 2021, , .	1.6	4
3	Multidimensional Tuning in Motor Cortical Neurons during Active Behavior. ENeuro, 2020, 7, ENEURO.0109-20.2020.	1.9	9
4	Response properties of single neurons in higher level auditory cortex of adult songbirds. Journal of Neurophysiology, 2019, 121, 218-237.	1.8	13
5	Differential developmental changes in cortical representations of auditory-vocal stimuli in songbirds. Journal of Neurophysiology, 2019, 121, 530-548.	1.8	6
6	Cortical interâ€hemispheric circuits for multimodal vocal learning in songbirds. Journal of Comparative Neurology, 2017, 525, 3312-3340.	1.6	26
7	Neural activity in cortico-basal ganglia circuits of juvenile songbirds encodes performance during goal-directed learning. ELife, 2017, 6, .	6.0	16
8	Development of neural responsivity to vocal sounds in higher level auditory cortex of songbirds. Journal of Neurophysiology, 2014, 112, 81-94.	1.8	24
9	Neural Representation of a Target Auditory Memory in a Cortico-Basal Ganglia Pathway. Journal of Neuroscience, 2013, 33, 14475-14488.	3.6	19
10	Auditory experience refines cortico-basal ganglia inputs to motor cortex via remapping of single axons during vocal learning in zebra finches. Journal of Neurophysiology, 2012, 107, 1142-1156.	1.8	21
11	Afferents from Vocal Motor and Respiratory Effectors Are Recruited during Vocal Production in Juvenile Songbirds. Journal of Neuroscience, 2012, 32, 10895-10906.	3.6	11
12	Development of Auditory-Vocal Perceptual Skills in Songbirds. PLoS ONE, 2012, 7, e52365.	2.5	4
13	Morphology of axonal projections from the high vocal center to vocal motor cortex in songbirds. Journal of Comparative Neurology, 2012, 520, 2742-2756.	1.6	13
14	Parallel pathways for vocal learning in basal ganglia of songbirds. Nature Neuroscience, 2010, 13, 153-155.	14.8	68
15	Conjunction of Vocal Production and Perception Regulates Expression of the Immediate Early Gene ZENK in a Novel Cortical Region of Songbirds. Journal of Neurophysiology, 2010, 103, 1833-1842.	1.8	12
16	Neurogenesis within the juvenile zebra finch telencephalic ventricular zone: A map of proliferative activity. Journal of Comparative Neurology, 2005, 481, 70-83.	1.6	47
17	Silent Synapses in a Thalamo-Cortical Circuit Necessary for Song Learning in Zebra Finches. Journal of Neurophysiology, 2005, 94, 3698-3707.	1.8	35
18	Timing and Prediction. Neuron, 2005, 46, 4-7.	8.1	7

SARAH W BOTTJER

#	Article	IF	CITATIONS
19	Limits on Reacquisition of Song in Adult Zebra Finches Exposed to White Noise. Journal of Neuroscience, 2004, 24, 5849-5862.	3.6	49
20	Developmental Regulation of Basal Ganglia Circuitry during the Sensitive Period for Vocal Learning in Songbirds. Annals of the New York Academy of Sciences, 2004, 1016, 395-415.	3.8	42
21	An immunohistochemical and pathway tracing study of the striatopallidal organization of area X in the male zebra finch. Journal of Comparative Neurology, 2004, 469, 239-261.	1.6	103
22	Development of Individual Axon Arbors in a Thalamocortical Circuit Necessary for Song Learning in Zebra Finches. Journal of Neuroscience, 2002, 22, 901-911.	3.6	33
23	The Role of Auditory Experience in the Formation of Neural Circuits Underlying Vocal Learning in Zebra Finches. Journal of Neuroscience, 2002, 22, 946-958.	3.6	56
24	Age and Sex Differences in Mitotic Activity within the Zebra Finch Telencephalon. Journal of Neuroscience, 2002, 22, 4080-4094.	3.6	44
25	Lesions of a telencephalic nucleus in male zebra finches: Influences on vocal behavior in juveniles and adults. Journal of Neurobiology, 2001, 46, 142-165.	3.6	64
26	Birdsong: models and mechanisms. Current Opinion in Neurobiology, 2001, 11, 721-726.	4.2	33
27	Connections of a motor cortical region in zebra finches: Relation to pathways for vocal learning. Journal of Comparative Neurology, 2000, 420, 244-260.	1.6	96
28	Development of Topography within Song Control Circuitry of Zebra Finches during the Sensitive Period for Song Learning. Journal of Neuroscience, 1999, 19, 6037-6057.	3.6	82
29	Axonal connections of the High Vocal Center and surrounding cortical regions in juvenile and adult male zebra finches. , 1998, 397, 118-138.		82
30	Intrinsic and synaptic properties of neurons in the vocal-control nucleus IMAN fromin vitro slice preparations of juvenile and adult zebra finches. Journal of Neurobiology, 1998, 37, 642-658.	3.6	26
31	DEVELOPMENTAL PLASTICITY IN NEURAL CIRCUITS FOR A LEARNED BEHAVIOR. Annual Review of Neuroscience, 1997, 20, 459-481.	10.7	94
32	Sex Differences in Neuropeptide B Staining of Song-Control Nuclei in Zebra Finch Brains. Brain, Behavior and Evolution, 1997, 50, 284-303.	1.7	42
33	Axonal connections of the medial magnocellular nucleus of the anterior neostriatum in zebra finches. Journal of Comparative Neurology, 1997, 382, 364-381.	1.6	94
34	Circuits, hormones, and learning: Vocal behavior in songbirds. , 1997, 33, 602-618.		231
35	Differential estrogen accumulation among populations of projection neurons in the higher vocal center of male canaries. Journal of Neurobiology, 1995, 26, 87-108.	3.6	84
36	Topographic organization of a forebrain pathway involved with vocal learning in zebra finches. Journal of Comparative Neurology, 1995, 358, 260-278.	1.6	151

SARAH W BOTTJER

#	Article	IF	CITATIONS
37	The distribution of tyrosine hydroxylase immunoreactivity in the brains of male and female zebra finches. Journal of Neurobiology, 1993, 24, 51-69.	3.6	215
38	Hormone-induced changes in identified cell populations of the higher vocal center in male canaries. Journal of Neurobiology, 1993, 24, 400-418.	3.6	80
39	Castration and antisteroid treatment impari vocal learning in male zebra finches. Journal of Neurobiology, 1992, 23, 337-353.	3.6	79
40	Matters of life and death in the songbird forebrain. Journal of Neurobiology, 1992, 23, 1172-1191.	3.6	30
41	Growth and regression of thalamic efferents in the song-control system of male zebra finches. Journal of Comparative Neurology, 1992, 326, 442-450.	1.6	86
42	Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. Journal of Comparative Neurology, 1989, 279, 312-326.	1.6	328
43	Cell death during development of a forebrain nucleus involved with vocal learning in zebra finches. Journal of Neurobiology, 1989, 20, 609-618.	3.6	52
44	Developmental changes in the cellular composition of a brain nucleus involved with song learning in zebra finches. Neuron, 1989, 3, 451-460.	8.1	52
45	Joint hormonal and sensory stimulation modulate neuronal number in adult canary brains. Journal of Neurobiology, 1988, 19, 624-635.	3.6	42
46	The Ontogeny of Vocal Learning in Songbirds. Handbook of Behavioral Neurobiology, 1986, , 129-161.	0.3	23
47	Afferent neurons in the hypoglossal nerve of the zebra finch(Poephila guttata): Localization with horseradish peroxidase. Journal of Comparative Neurology, 1982, 210, 190-197.	1.6	56