Marcus D Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€accuracy protein structure prediction in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1687-1699.	2.6	220
2	A Widespread Glutamine-Sensing Mechanism in the Plant Kingdom. Cell, 2014, 159, 1188-1199.	28.9	127
3	Structure and Activity of the N-Terminal Substrate Recognition Domains in Proteasomal ATPases. Molecular Cell, 2009, 34, 580-590.	9.7	116
4	A coiled-coil motif that sequesters ions to the hydrophobic core. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16950-16955.	7.1	77
5	A Divergent Sm Fold in EDC3 Proteins Mediates DCP1 Binding and P-Body Targeting. Molecular and Cellular Biology, 2007, 27, 8600-8611.	2.3	66
6	The Structure of E.Âcoli IgC-Binding Protein D Suggests a General Model for Bending and Binding in Trimeric Autotransporter Adhesins. Structure, 2011, 19, 1021-1030.	3.3	66
7	P _{II} -like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4861-E4869.	7.1	65
8	Mechanism of Phosphoryl Transfer Catalyzed by Shikimate Kinase from Mycobacterium tuberculosis. Journal of Molecular Biology, 2006, 364, 411-423.	4.2	63
9	Complete fiber structures of complex trimeric autotransporter adhesins conserved in enterobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20907-20912.	7.1	57
10	Thalidomide mimics uridine binding to an aromatic cage in cereblon. Journal of Structural Biology, 2014, 188, 225-232.	2.8	54
11	A domain dictionary of trimeric autotransporter adhesins. International Journal of Medical Microbiology, 2015, 305, 265-275.	3.6	50
12	Assessing the utility of <scp>CASP14</scp> models for molecular replacement. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1752-1769.	2.6	47
13	Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation. Journal of Structural Biology, 2014, 186, 376-379.	2.8	46
14	Chemical Ligand Space of Cereblon. ACS Omega, 2018, 3, 11163-11171.	3.5	43
15	Origin of a folded repeat protein from an intrinsically disordered ancestor. ELife, 2016, 5, .	6.0	43
16	Structural Basis for Toughness and Flexibility in the C-terminal Passenger Domain of an Acinetobacter Trimeric Autotransporter Adhesin. Journal of Biological Chemistry, 2016, 291, 3705-3724.	3.4	41
17	The breakthrough in protein structure prediction. Biochemical Journal, 2021, 478, 1885-1890.	3.7	39
18	De-Novo Design of Cereblon (CRBN) Effectors Guided by Natural Hydrolysis Products of Thalidomide Derivatives. Journal of Medicinal Chemistry, 2019, 62, 6615-6629.	6.4	38

Marcus D Hartmann

#	Article	IF	CITATIONS
19	Computational models in the service of Xâ€ray and <scp>cryoâ€</scp> electron microscopy structure determination. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1633-1646.	2.6	37
20	A new expression system for protein crystallization using trimeric coiled-coil adaptors. Protein Engineering, Design and Selection, 2007, 21, 11-18.	2.1	36
21	A secreted fungal histidine―and alanineâ€rich protein regulates metal ion homeostasis and oxidative stress. New Phytologist, 2020, 227, 1174-1188.	7.3	35
22	Crystal structure of a dimeric archaeal Cleavage and Polyadenylation Specificity Factor. Journal of Structural Biology, 2011, 173, 191-195.	2.8	31
23	A CTP-Dependent Archaeal Riboflavin Kinase Forms a Bridge in the Evolution of Cradle-Loop Barrels. Structure, 2007, 15, 1577-1590.	3.3	29
24	A Trimeric Lipoprotein Assists in Trimeric Autotransporter Biogenesis in Enterobacteria. Journal of Biological Chemistry, 2014, 289, 7388-7398.	3.4	28
25	Target highlights in <scp>CASP14</scp> : Analysis of models by structure providers. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1647-1672.	2.6	27
26	$\hat{I} \pm / \hat{I}^2$ coiled coils. ELife, 2016, 5, .	6.0	27
27	Functional and Structural Roles of Coiled Coils. Sub-Cellular Biochemistry, 2017, 82, 63-93.	2.4	26
28	Diurnal metabolic control in cyanobacteria requires perception of second messenger signaling molecule c-di-AMP by the carbon control protein SbtB. Science Advances, 2021, 7, eabk0568.	10.3	26
29	Structure and Evolution of N-domains in AAA Metalloproteases. Journal of Molecular Biology, 2015, 427, 910-923.	4.2	23
30	Lactoferrin Is an Allosteric Enhancer of the Proteolytic Activity of Cathepsin G. PLoS ONE, 2016, 11, e0151509.	2.5	22
31	Structural Dynamics of the Cereblon Ligand Binding Domain. PLoS ONE, 2015, 10, e0128342.	2.5	22
32	Structural diversity of oligomeric β-propellers with different numbers of identical blades. ELife, 2019, 8, .	6.0	21
33	LMO2 activation by deacetylation is indispensable for hematopoiesis and T-ALL leukemogenesis. Blood, 2019, 134, 1159-1175.	1.4	20
34	Rpn11-mediated ubiquitin processing in an ancestral archaeal ubiquitination system. Nature Communications, 2018, 9, 2696.	12.8	19
35	Characterization of MCU-Binding Proteins MCUR1 and CCDC90B — Representatives of a Protein Family Conserved in Prokaryotes and Eukaryotic Organelles. Structure, 2019, 27, 464-475.e6.	3.3	19
36	A FRET-Based Assay for the Identification and Characterization of Cereblon Ligands. Journal of Medicinal Chemistry, 2016, 59, 770-774.	6.4	18

Marcus D Hartmann

#	Article	IF	CITATIONS
37	STAC—A New Domain Associated with Transmembrane Solute Transport and Two-Component Signal Transduction Systems. Journal of Molecular Biology, 2015, 427, 3327-3339.	4.2	17
38	Some of the most interesting <scp>CASP</scp> 11 targets through the eyes of their authors. Proteins: Structure, Function and Bioinformatics, 2016, 84, 34-50.	2.6	16
39	A soluble mutant of the transmembrane receptor Af1503 features strong changes in coiled-coil periodicity. Journal of Structural Biology, 2014, 186, 357-366.	2.8	15
40	Your personalized protein structure: Andrei N. Lupas fused to GCN4 adaptors. Journal of Structural Biology, 2014, 186, 380-385.	2.8	15
41	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15
42	Functional and structural characterization of PIIâ€like protein CutA does not support involvement in heavy metal tolerance and hints at a smallâ€molecule carrying/signaling role. FEBS Journal, 2021, 288, 1142-1162.	4.7	14
43	Sweet and Blind Spots in E3 Ligase Ligand Space Revealed by a Thermophoresis-Based Assay. ACS Medicinal Chemistry Letters, 2021, 12, 74-81.	2.8	14
44	Target highlights in CASP13: Experimental target structures through the eyes of their authors. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1037-1057.	2.6	12
45	The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System. Structure, 2017, 25, 834-845.e5.	3.3	11
46	Target highlights from the first postâ€PSI CASP experiment (CASP12, May–August 2016). Proteins: Structure, Function and Bioinformatics, 2018, 86, 27-50.	2.6	11
47	An Interface-Driven Design Strategy Yields a Novel, Corrugated Protein Architecture. ACS Synthetic Biology, 2018, 7, 2226-2235.	3.8	11
48	On the correlation of cereblon binding, fluorination and antiangiogenic properties of immunomodulatory drugs. Biochemical and Biophysical Research Communications, 2021, 534, 67-72.	2.1	11
49	High-resolution structures of the bound effectors avadomide (CC-122) and iberdomide (CC-220) highlight advantages and limitations of the MsCI4 soaking system. Acta Crystallographica Section D: Structural Biology, 2022, 78, 290-298.	2.3	11
50	Replacing the phthalimide core in thalidomide with benzotriazole. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 527-530.	5.2	9
51	Architecture and functional dynamics of the pentafunctional AROM complex. Nature Chemical Biology, 2020, 16, 973-978.	8.0	8
52	Archaeal Connectase is a specific and efficient protein ligase related to proteasome β subunits. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
53	Structural characterization of the bacterial proteasome homolog BPH reveals a tetradecameric double-ring complex with unique inner cavity properties. Journal of Biological Chemistry, 2018, 293, 920-930.	3.4	6
54	On the Origins of Symmetry and Modularity in the Proteasome Family. BioEssays, 2019, 41, 1800237.	2.5	4

#	Article	IF	CITATIONS
55	Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiology Reviews, 2022, 46, .	8.6	4
56	A complex struggle for direction. Nature Chemical Biology, 2022, 18, 119-120.	8.0	3
57	Refolding and characterization of two G protein-coupled receptors purified from E. coli inclusion bodies. PLoS ONE, 2021, 16, e0247689.	2.5	2
58	PotN represents a novel energyâ€state sensing PII subfamily, occurring in firmicutes. FEBS Journal, 2022, 289, 5305-5321.	4.7	2