Stéphane Gastaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9270932/publications.pdf

Version: 2024-02-01

62 papers 1,827 citations

257450 24 h-index 276875 41 g-index

76 all docs 76
docs citations

76 times ranked 1791 citing authors

#	Article	IF	CITATIONS
1	Probing the efficiency of thermal and photochemical bond homolysis in functionalized nanostructured SBA-15 silicas. Microporous and Mesoporous Materials, 2021, 311, 110674.	4.4	4
2	Coniferyl Alcohol Radical Detection by the Dirigent Protein At DIR6 Monitored by EPR. ChemBioChem, 2021, 22, 992-995.	2.6	1
3	Monitoring Crystallization Processes in Confined Porous Materials by Dynamic Nuclear Polarization Solid-State Nuclear Magnetic Resonance. Journal of the American Chemical Society, 2021, 143, 6095-6103.	13.7	21
4	Modulating lifetimes and relaxation times of phenoxyl radicals through their incorporation into different hybrid nanostructures. Physical Chemistry Chemical Physics, 2019, 21, 16337-16344.	2.8	3
5	Embedding cyclic nitrone in mesoporous silica particles for EPR spin trapping of superoxide and other radicals. Analyst, The, 2019, 144, 4194-4203.	3.5	16
6	Nanostructured Silicas, a Platform for the Observation of Transient Radicals: Application to Sulfinyl Radicals. Journal of Physical Chemistry C, 2018, 122, 681-686.	3.1	6
7	Diazene-Functionalized Lamellar Materials as Nanobuilding Blocks: Application as Light-Sensitive Fillers to Initiate Radical Photopolymerizations. ACS Macro Letters, 2017, 6, 117-120.	4.8	8
8	Evidence for the contribution of degenerate hydrogen atom transport to the persistence of sulfanyl radicals anchored to nanostructured hybrid materials. New Journal of Chemistry, 2017, 41, 6678-6684.	2.8	5
9	Investigating Unusual Organic Functional Groups to Engineer the Surface Chemistry of Mesoporous Silica to Tune CO ₂ –Surface Interactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14490-14496.	8.0	2
10	Silica materials with wall-embedded nitroxides provide efficient polarization matrices for dynamic nuclear polarization NMR. Chemical Communications, 2016, 52, 5531-5533.	4.1	18
11	Solid state generation of phenoxyl radicals through \hat{l}^2 -fragmentation from specifically designed diazenes. An ESR investigation. Tetrahedron, 2016, 72, 7744-7748.	1.9	6
12	Design of Wall-Functionalized Hybrid Silicas Containing Diazene Radical Precursors. EPR Investigation of Their Photolysis and Thermolysis. Journal of Physical Chemistry C, 2015, 119, 5434-5439.	3.1	9
13	Arylsulfanyl radical lifetime in nanostructured silica: dramatic effect of the organic monolayer structure. Chemical Science, 2014, 5, 4716-4723.	7.4	16
14	Axial-to-central chirality transfer in cyclization processes. Chemical Society Reviews, 2013, 42, 8434.	38.1	129
15	Speeding-up enzyme-catalyzed synthesis of polyamides using ï‰-amino-α-alkoxy-acetate as monomer. Polymer, 2013, 54, 3467-3471.	3.8	12
16	Enzyme-triggered Radical Reactions: Another Approach For Tin-free Radical Chemistry. Chimia, 2012, 66, 435.	0.6	0
17	CAL-B catalyzed synthesis of chiral polyamides. Tetrahedron: Asymmetry, 2012, 23, 867-875.	1.8	11
18	Kinetic Studies on the Formation of Sulfonyl Radicals and Their Addition to Carbon–Carbon Multiple Bonds. Journal of Physical Chemistry A, 2012, 116, 7623-7628.	2.5	35

#	Article	IF	CITATIONS
19	<i>Nâ€</i> Octanoyldimethylglycine Trifluoroethyl Ester, an Acyl Donor Leading to Highly Enantioselective Proteaseâ€Catalysed Kinetic Resolution of Amines. Advanced Synthesis and Catalysis, 2012, 354, 1759-1764.	4.3	6
20	Novozym 435-catalyzed synthesis of polyetheramides from amino-esters, or diesters and diamines built on ethylene- and diethylene- glycol moieties. Polymer, 2012, 53, 1172-1179.	3.8	12
21	Chemoenzymatic Dynamic Kinetic Resolution of Primary Amines Catalyzed by CAL-B at 38–40 °C. Journal of Organic Chemistry, 2011, 76, 7281-7286.	3.2	51
22	Alkylphenol oxidation with a laccase from a white-rot fungus: Effects of culture induction and of ABTS used as a mediator. Chemosphere, 2011, 82, 284-289.	8.2	25
23	The influence of the molecular system on the performance of heteronuclear decoupling in solid-state NMR. Journal of Magnetic Resonance, 2011, 210, 75-81.	2.1	7
24	A new substrate to measure laccase activities in complex environments: Application to litters. Soil Biology and Biochemistry, 2010, 42, 1001-1005.	8.8	10
25	Synthesis of tetrahydropyrans and related heterocycles via prins cyclization; extension to aza-prins cyclization. Tetrahedron, 2010, 66, 413-445.	1.9	330
26	Straightforward Access to α-Methylamines through Cross-Metathesis. Synthesis, 2010, 2010, 1334-1338.	2.3	1
27	Switching from (R)- to (S)-selective chemoenzymatic DKR of amines involving sulfanyl radical-mediated racemization. Organic and Biomolecular Chemistry, 2010, 8, 4165.	2.8	32
28	Proteases screening for the kinetic resolution of amines with N-acyl α-amino acid trifluoromethyl esters: automated docking approach of binding energies using Subtilisin Novo as a prototype for serine proteases. Tetrahedron: Asymmetry, 2009, 20, 2823-2834.	1.8	9
29	En Route to (S)-Selective Chemoenzymatic Dynamic Kinetic Resolution of Aliphatic Amines. One-Pot KR/Racemization/KR Sequence Leading to (S)-Amides. Journal of Organic Chemistry, 2009, 74, 2901-2903.	3.2	43
30	N-Acyl glycinates as acyl donors in serine protease-catalyzed kinetic resolution of amines. Improvement of selectivity and reaction rate. Organic and Biomolecular Chemistry, 2008, 6, 3917.	2.8	18
31	Dicobalt Hexacarbonyl Complexes of Alkynyl Imines in a Sequential Staudinger/Pausonâ^Khand Process. A Route to New Fused Tricyclic β-Lactams. Journal of Organic Chemistry, 2008, 73, 8469-8473.	3.2	27
32	Highly Efficient Photochemically Induced Thiyl Radical-Mediated Racemization of Aliphatic Amines at 30 ŰC. Journal of Organic Chemistry, 2008, 73, 364-368.	3.2	35
33	Unprecedented Cyclization of Nicholas Cations onto Unactivated Terminal Alkenes: Tandem Trapping of Cationic Intermediates. Synlett, 2007, 2007, 0423-0426.	1.8	2
34	Highly Selective Enzymatic Kinetic Resolution of Primary Amines at 80 °C:  A Comparative Study of Carboxylic Acids and Their Ethyl Esters as Acyl Donors. Journal of Organic Chemistry, 2007, 72, 6918-6923.	3.2	59
35	Dynamic Kinetic Resolution of Amines Involving Biocatalysis and in Situ Free Radical Mediated Racemization. Organic Letters, 2007, 9, 837-839.	4.6	93
36	Protected propargylic acetals. Nicholas–Prins cyclization leading to functionalized 2-alkynyl-tetrahydropyrans. Intramolecular trapping by allenes. Tetrahedron Letters, 2007, 48, 7801-7804.	1.4	23

#	Article	IF	CITATIONS
37	Looking forward: a glance into the future of organic chemistry. New Journal of Chemistry, 2006, 30, 823-831.	2.8	11
38	Thiyl Radical Mediated Racemization of Nonactivated Aliphatic Amines. Journal of Organic Chemistry, 2006, 71, 7288-7292.	3.2	64
39	Thiyl Radical Mediated Racemization of Benzylic Amines. European Journal of Organic Chemistry, 2006, 2006, 3242-3250.	2.4	39
40	Methods for the Cleavage of Allylic and Propargylic C–N Bonds in Amines and Amides – Selected Alternative Applications of the 1,3â€Hydrogen Shift. European Journal of Organic Chemistry, 2005, 2005, 3855-3873.	2.4	67
41	Methods for the Cleavage of Allylic and Propargylic C—N Bonds in Amines and Amides — Selected Alternative Applications of the 1,3-Hydrogen Shift. ChemInform, 2005, 36, no.	0.0	0
42	Design of Polyaromatic Hydrocarbon-Supported Tin Reagents: A New Family of Tin Reagents Easily Removable from Reaction Mixtures ChemInform, 2004, 35, no.	0.0	0
43	Design of Polyaromatic Hydrocarbon-Supported Tin Reagents:Â A New Family of Tin Reagents Easily Removable from Reaction Mixtures. Journal of Organic Chemistry, 2004, 69, 4464-4470.	3.2	36
44	Thiyl Radical-Mediated Cleavage of Allylic Câ^N Bonds: Scope, Limitations, and Theoretical Support to the Mechanism. Journal of the American Chemical Society, 2004, 126, 12343-12352.	13.7	42
45	Synthesis and Selective Transformation of Nitrogen-Containing Compounds via Radical Pathways. ChemInform, 2003, 34, no.	0.0	0
46	Rate Constants for the \hat{I}^2 -Elimination of Tosyl Radical from a Variety of Substituted Carbon-Centered Radicals ChemInform, 2003, 34, no.	0.0	0
47	Synthesis of (\hat{A}_{\pm}) - and (\hat{a}^{*}) -botryodiplodin using stereoselective radical cyclizations of acyclic esters and acetals. Tetrahedron: Asymmetry, 2003, 14, 3005-3018.	1.8	28
48	Rate Constants for the \hat{I}^2 -Elimination of Tosyl Radical from a Variety of Substituted Carbon-Centered Radicals. Journal of Organic Chemistry, 2003, 68, 3532-3537.	3.2	35
49	Tandem radical and non-radical reactions mediated with thiols—a new method of cleavage of allylic amines. Chemical Communications, 2002, , 216-217.	4.1	25
50	Synthesis and selective transformation of nitrogen-containing compounds via radical pathways. Comptes Rendus Chimie, 2002, 5, 623-638.	0.5	40
51	PAH-supported tin hydride: a new tin reagent easily removable from reaction mixtures. Tetrahedron Letters, 2002, 43, 4309-4311.	1.4	21
52	Reaction of sodium cyanide with 5-bromo-1-benzosuberone: a reappraisal. New Journal of Chemistry, 2000, 24, 249-250.	2.8	1
53	Diiodosilane:Â A Reagent for Mild, Efficient Conversion of Carbamates to Ureas via Isocyanates. Journal of Organic Chemistry, 2000, 65, 3239-3240.	3.2	35
54	Intramolecular radical allylation with allylic sulfones— A synthesis of (±)-botryodiplodin. Tetrahedron Letters, 1999, 40, 3371-3374.	1.4	18

#	Article	IF	CITATIONS
55	On the Role of Neighboring Group Participation and Ortho Esters in Î ² -Xylosylation:Â13C NMR Observation of a Bridging 2-Phenyl-1,3-dioxalenium Ion. Journal of Organic Chemistry, 1999, 64, 5224-5229.	3.2	96
56	Diverging Effects of Steric Congestion on the Reaction of Tributylstannyl Radicals with Areneselenols and Aryl Bromides and Their Mechanistic Implications. Journal of Organic Chemistry, 1999, 64, 2877-2882.	3.2	24
57	Influence of quaternization or coordination of nitrogen with a Lewis acid upon the diastereoselectivity of 5-exo ring closure of β-aminoalkyl radicals. Tetrahedron, 1998, 54, 12829-12840.	1.9	15
58	On the stereochemistry of vicinal nucleophilic substitution of \hat{l}^2 -(phosphatoxy)alkyl radicals. Tetrahedron Letters, 1998, 39, 9377-9380.	1.4	12
59	Synthesis of functionalised indolines by radical-polar crossover reactions. Journal of the Chemical Society Perkin Transactions 1, 1997, , 1549-1558.	0.9	37
60	4-Isopropenyl-3-tosylmethyl pyrrolidines through radical cyclizations of 4-aza-1,6-dienes - an approach to kainic acids. Tetrahedron Letters, 1996, 37, 1229-1232.	1.4	23
61	1,2- and 1,5-stereocontrols in 5-hexenyl radical intramol cyclocondensations: cooperative or antagonist effect. Confrontation of experimental results with MM2 calculations of transition states. Journal of Organic Chemistry, 1995, 60, 6040-6045.	3.2	20
62	Chemoselective ring construction from unsymmetrical 1,6-dienes via radical addition of sulfonyl halides. Journal of Organic Chemistry, 1992, 57, 6118-6125.	3.2	50