
Le Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9270561/publications.pdf Version: 2024-02-01

LE MIN

#	Article	IF	CITATIONS
1	Factors leading to alpelisib discontinuation in patients with hormone receptor positive, human epidermal growth factor receptor-2 negative breast cancer. Breast Cancer Research and Treatment, 2022, 192, 303-311.	2.5	6
2	The Effects of Diabetes and Glycemic Control on Cancer Outcomes in Individuals With Metastatic Breast Cancer. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2511-2521.	3.6	7
3	Long-term safety of pembrolizumab monotherapy and relationship with clinical outcome: A landmark analysis in patients with advanced melanoma. European Journal of Cancer, 2021, 144, 182-191.	2.8	57
4	Coexistence of Immune Checkpoint Inhibitor-Induced Autoimmune Diabetes and Pancreatitis. Frontiers in Endocrinology, 2021, 12, 620522.	3.5	11
5	Pegvisomant as Monotherapy or Combination Therapy in Somatostatin Refractory Acromegaly. Journal of the Endocrine Society, 2021, 5, A523-A524.	0.2	Ο
6	Intractable hiccups as a rare gastrointestinal manifestation in severe endocrine and metabolic crisis: case report and review of the literature. Therapeutic Advances in Endocrinology and Metabolism, 2020, 11, 204201882093430.	3.2	6
7	Modeling Postoperative Cortisol Using Normalized Decay Rates in Cushing's Disease. Journal of Neurological Surgery, Part B: Skull Base, 2020, 81, .	0.8	0
8	The Impact of High-Dose Glucocorticoids on the Outcome of Immune-Checkpoint Inhibitor–Related Thyroid Disorders. Cancer Immunology Research, 2019, 7, 1214-1220.	3.4	44
9	Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocrine Reviews, 2019, 40, 17-65.	20.1	349
10	SUN-LB024 Elevation in Morning Glucose Level May Be a Signal for the Development of Immune Checkpoint Inhibitor (ICPi) Induced Autoimmune Diabetes Insulin. Journal of the Endocrine Society, 2019, 3, .	0.2	0
11	OR19-5 The Impact Of High Dose Glucocorticoids On The Outcome Of Immune Checkpoint Inhibitor-related Thyroid Disorders And The Baseline TSH As A Predictive Biomarker. Journal of the Endocrine Society, 2019, 3, .	0.2	0
12	Unique cytologic features of thyroiditis caused by immune checkpoint inhibitor therapy for malignant melanoma. Genes and Diseases, 2018, 5, 46-48.	3.4	53
13	Endocrine dysfunction induced by immune checkpoint inhibitors: Practical recommendations for diagnosis and clinical management. Cancer, 2018, 124, 1111-1121.	4.1	72
14	Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens. JAMA Oncology, 2018, 4, 173.	7.1	753
15	The Current Understanding of the Endocrine Effects From Immune Checkpoint Inhibitors and Recommendations for Management. JNCI Cancer Spectrum, 2018, 2, pky021.	2.9	92
16	Clinical Identification of Oncogenic Drivers and Copy-Number Alterations in Pituitary Tumors. Endocrinology, 2017, 158, 2284-2291.	2.8	53
17	Gene expression profiling of anti-CTLA4-treated metastatic melanoma in patients with treatment-induced autoimmunity. Laboratory Investigation, 2017, 97, 207-216.	3.7	13
18	Characterization of Thyroid Disorders in Patients Receiving Immune Checkpoint Inhibition Therapy. Cancer Immunology Research, 2017, 5, 1133-1140.	3.4	114

Le Min

#	Article	IF	CITATIONS
19	Pulsatile GnRH Therapy May Restore Hypothalamus–Pituitary–Testis Axis Function in Patients With Congenital Combined Pituitary Hormone Deficiency: A Prospective, Self-Controlled Trial. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2291-2300.	3.6	16
20	Targeting both sides of the GDF15-GFRAL-RET receptor complex: A new approach to achieve body weight homeostasis. Genes and Diseases, 2017, 4, 183-184.	3.4	9
21	Pulsatile gonadotropin-releasing hormone therapy is associated with earlier spermatogenesis compared to combined gonadotropin therapy in patients with congenital hypogonadotropic hypogonadism. Asian Journal of Andrology, 2017, 19, 680.	1.6	32
22	Immune-related endocrine disorders in novel immune checkpoint inhibition therapy. Genes and Diseases, 2016, 3, 252-256.	3.4	17
23	Computational Analysis of Missense Variants of G Protein-Coupled Receptors Involved in the Neuroendocrine Regulation of Reproduction. Neuroendocrinology, 2016, 103, 230-239.	2.5	16
24	Systemic High-Dose Corticosteroid Treatment Does Not Improve the Outcome of Ipilimumab-Related Hypophysitis: A Retrospective Cohort Study. Clinical Cancer Research, 2015, 21, 749-755.	7.0	223
25	RF9 Acts as a KISS1R Agonist In Vivo and In Vitro. Endocrinology, 2015, 156, 4639-4648.	2.8	28
26	Congenital combined pituitary hormone deficiency patients have better responses to gonadotrophin-induced spermatogenesis than idiopathic hypogonadotropic hypogonadism patients. Human Reproduction, 2015, 30, 2031-2037.	0.9	19
27	Corticosteroids and immune checkpoint blockade. Aging, 2015, 7, 521-522.	3.1	26
28	KISS1R Signals Independently of Gαq/11 and Triggers LH Secretion via the β-Arrestin Pathway in the Male Mouse. Endocrinology, 2014, 155, 4433-4446.	2.8	26
29	Dynamic Kisspeptin Receptor Trafficking Modulates Kisspeptin-Mediated Calcium Signaling. Molecular Endocrinology, 2014, 28, 16-27.	3.7	40
30	Anti-PD1 Following Ipilimumab for Mucosal Melanoma: Durable Tumor Response Associated with Severe Hypothyroidism and Rhabdomyolysis. Cancer Immunology Research, 2014, 2, 15-18.	3.4	95
31	Role of gonadotropin-releasing hormone receptor mutations in patients with a wide spectrum of pubertal delay. Fertility and Sterility, 2014, 102, 838-846.e2.	1.0	47
32	Ipilimumab-induced autoimmune adrenalitis. Lancet Diabetes and Endocrinology,the, 2013, 1, e15.	11.4	93
33	Single-Cell Analyses Reveal That KISS1R-Expressing Cells Undergo Sustained Kisspeptin-Induced Signaling That Is Dependent upon An Influx of Extracellular Ca2+. Endocrinology, 2012, 153, 5875-5887.	2.8	24
34	Association of Ipilimumab Therapy for Advanced Melanoma with Secondary Adrenal Insufficiency: A Case Series. Endocrine Practice, 2012, 18, 351-355.	2.1	55
35	Thyroid autoimmunity and ophthalmopathy related to melanoma biological therapy. European Journal of Endocrinology, 2011, 164, 303-307.	3.7	157