
Sharda P Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9269773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rlip Depletion Alters Oncogene Transcription at Multiple Distinct Regulatory Levels. Cancers, 2022, 14, 527.	3.7	0
2	Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer's Disease?. International Journal of Molecular Sciences, 2022, 23, 6098.	4.1	8
3	Haploinsufficiency Interactions between RALBP1 and p53 in ERBB2 and PyVT Models of Mouse Mammary Carcinogenesis. Cancers, 2021, 13, 3329.	3.7	5
4	Dietary supplementation with sulforaphane ameliorates skin aging through activation of the Keap1-Nrf2 pathway. Journal of Nutritional Biochemistry, 2021, 98, 108817.	4.2	11
5	RALBP1 in Oxidative Stress and Mitochondrial Dysfunction in Alzheimer's Disease. Cells, 2021, 10, 3113.	4.1	12
6	Anticancer Activity of Ω-6 Fatty Acids through Increased 4-HNE in Breast Cancer Cells. Cancers, 2021, 13, 6377.	3.7	6
7	Sulforaphane prevents ageâ€associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell, 2020, 19, e13261.	6.7	64
8	Rlip Depletion Suppresses Growth of Breast Cancer. Cancers, 2020, 12, 1446.	3.7	7
9	Effects of single-dose protons or oxygen ions on function and structure of the cardiovascular system in male Long Evans rats. Life Sciences in Space Research, 2020, 26, 62-68.	2.3	8
10	Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice. Microorganisms, 2020, 8, 1500.	3.6	14
11	Topical 2′-Hydroxyflavanone for Cutaneous Melanoma. Cancers, 2019, 11, 1556.	3.7	13
12	Effects of low-dose oxygen ions and protons on cardiac function and structure in male C57BL/6J mice. Life Sciences in Space Research, 2019, 20, 72-84.	2.3	20
13	Rlip depletion prevents spontaneous neoplasia in TP53 null mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3918-3923.	7.1	29
14	Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS ONE, 2018, 13, e0193918.	2.5	65
15	Anticancer activity of 2'-hydroxyflavanone towards lung cancer. Oncotarget, 2018, 9, 36202-36219.	1.8	22
16	A New Derivatization Reagent for HPLC–MS Analysis of Biological Organic Acids. Chromatographia, 2017, 80, 1723-1732.	1.3	24
17	Rolipram Improves Outcome in a Rat Model of Infant Sepsis-Induced Cardiorenal Syndrome. Frontiers in Pharmacology, 2017, 8, 237.	3.5	12
18	Effects of local irradiation combined with sunitinib on early remodeling, mitochondria, and oxidative stress in the rat heart. Radiotherapy and Oncology, 2016, 119, 259-264.	0.6	27

Sharda P Singh

#	Article	IF	CITATIONS
19	Modulation of myocardial injury and collagen deposition following ischaemia–reperfusion by linagliptin and liraglutide, and both together. Clinical Science, 2016, 130, 1353-1362.	4.3	27
20	Effects of ionizing radiation on the heart. Mutation Research - Reviews in Mutation Research, 2016, 770, 319-327.	5.5	102
21	Sulforaphane protects the heart from doxorubicin-induced toxicity. Free Radical Biology and Medicine, 2015, 86, 90-101.	2.9	104
22	Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicology and Applied Pharmacology, 2015, 289, 361-370.	2.8	152
23	Effects of Local Heart Irradiation in a Glutathione S-Transferase Alpha 4-Null Mouse Model. Radiation Research, 2015, 183, 610.	1.5	20
24	Targeting mitochondrial oxidants in a pediatric model of sepsisâ€induced cardiomyopathy. FASEB Journal, 2015, 29, 942.9.	0.5	0
25	Protection from Oxidative and Electrophilic Stress in the Gsta4-null Mouse Heart. Cardiovascular Toxicology, 2013, 13, 347-356.	2.7	16
26	<i>Gsta</i> 4 Null Mouse Embryonic Fibroblasts Exhibit Enhanced Sensitivity to Oxidants: Role of 4-Hydroxynonenal in Oxidant Toxicity. Open Journal of Apoptosis, 2013, 02, 1-11.	1.5	31
27	Disruption of the mGsta4 Gene Increases Life Span of C57BL Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 14-23.	3.6	52
28	The human hGSTA5 gene encodes an enzymatically active protein. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 16-22.	2.4	12
29	Role of the Electrophilic Lipid Peroxidation Product 4-Hydroxynonenal in the Development and Maintenance of Obesity in Mice. Biochemistry, 2008, 47, 3900-3911.	2.5	73
30	Fat accumulation in Caenorhabditis elegans triggeredby the electrophilic lipid peroxidation product 4-Hydroxynonenal (4-HNE). Aging, 2008, 1, 68-80.	3.1	28
31	Mutagenic Effects of 4-Hydroxynonenal Triacetate, a Chemically Protected Form of the Lipid Peroxidation Product 4-Hydroxynonenal, as Assayed in L5178Y/Tk+/– Mouse Lymphoma Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 855-861.	2.5	33
32	Physiological role of mGSTA4-4, a glutathione S-transferase metabolizing 4-hydroxynonenal: generation and analysis of mGsta4 null mouse. Toxicology and Applied Pharmacology, 2004, 194, 296-308.	2.8	133
33	Membrane Association of Glutathione S-Transferase mCSTA4-4, an Enzyme That Metabolizes Lipid Peroxidation Products. Journal of Biological Chemistry, 2002, 277, 4232-4239.	3.4	60
34	Catalytic function ofDrosophila melanogasterglutathioneS-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. FEBS Journal, 2001, 268, 2912-2923.	0.2	254
35	Crystal Structure of a Murine GlutathioneS-Transferase in Complex with a Glutathione Conjugate of 4-Hydroxynon-2-enal in One Subunit and Glutathione in the Other:Â Evidence of Signaling across the Dimer Interfaceâ€,‡. Biochemistry, 1999, 38, 11887-11894.	2.5	55