Lawrence Banks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9269341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Biology and Life-Cycle of Human Papillomaviruses. Vaccine, 2012, 30, F55-F70.	3.8	1,042
2	Role of a p53 polymorphism in the development of human papilloma-virus-associated cancer. Nature, 1998, 393, 229-234.	27.8	897
3	The Human Papillomavirus E6 protein and its contribution to malignant progression. Oncogene, 2001, 20, 7874-7887.	5.9	446
4	The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene, 1999, 18, 7690-7700.	5.9	379
5	Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene, 1999, 18, 5487-5496.	5.9	285
6	Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes and Development, 2000, 14, 3065-3073.	5.9	284
7	Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene, 2000, 19, 5270-5280.	5.9	281
8	Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene, 1998, 17, 2943-2954.	5.9	265
9	Multi-PDZ Domain Protein MUPP1 Is a Cellular Target for both Adenovirus E4-ORF1 and High-Risk Papillomavirus Type 18 E6 Oncoproteins. Journal of Virology, 2000, 74, 9680-9693.	3.4	258
10	Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nature Cell Biology, 2017, 19, 1214-1225.	10.3	243
11	Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene, 2002, 21, 5088-5096.	5.9	188
12	Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene, 2005, 24, 7830-7838.	5.9	157
13	Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. International Journal of Cancer, 2006, 119, 1285-1290.	5.1	132
14	The Human Papillomavirus Type 16 E5 Gene Cooperates with the E7 Gene to Stimulate Proliferation of Primary Cells and Increases Viral Gene Expression. Virology, 1994, 203, 73-80.	2.4	131
15	Interaction of viral oncoproteins with cellular target molecules: infection with highâ€risk vs Iowâ€risk human papillomaviruses. Apmis, 2010, 118, 471-493.	2.0	125
16	Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutation Research - Reviews in Mutation Research, 2017, 772, 23-35.	5.5	123
17	The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene, 2005, 24, 6222-6230.	5.9	118
18	Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth. Oncogene, 1997, 15, 257-264.	5.9	115

#	Article	IF	CITATIONS
19	HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene, 2004, 23, 8033-8039.	5.9	112
20	Human Papillomavirus L2 Facilitates Viral Escape from Late Endosomes via Sorting Nexin 17. Traffic, 2012, 13, 455-467.	2.7	111
21	Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. Journal of Cell Science, 2003, 116, 4925-4934.	2.0	110
22	HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene, 2001, 20, 5431-5439.	5.9	109
23	Structures of a Human Papillomavirus (HPV) E6 Polypeptide Bound to MAGUK Proteins: Mechanisms of Targeting Tumor Suppressors by a High-Risk HPV Oncoprotein. Journal of Virology, 2007, 81, 3618-3626.	3.4	107
24	Viruses and the 26S proteasome: hacking into destruction. Trends in Biochemical Sciences, 2003, 28, 452-459.	7.5	106
25	The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy. Viruses, 2015, 7, 3530-3551.	3.3	100
26	HPV E6 targeted degradation of the discs large protein: evidence for the involvement of a novel ubiquitin ligase. Oncogene, 2000, 19, 719-725.	5.9	94
27	PDZ domains: the building blocks regulating tumorigenesis. Biochemical Journal, 2011, 439, 195-205.	3.7	90
28	Human papillomaviruses and the specificity of PDZ domain targeting. FEBS Journal, 2012, 279, 3530-3537.	4.7	84
29	HPV-18 E6*I protein modulates the E6-directed degradation of p53 by binding to full-length HPV-18 E6. Oncogene, 1999, 18, 7403-7408.	5.9	83
30	Interaction between the HPV-16 E2 transcriptional activator and p53. Oncogene, 1999, 18, 7748-7754.	5.9	79
31	Differential expression of the human homologue ofdrosophila discs large oncosuppressor in histologic samples from human papillomavirus-associated lesions as a marker for progression to malignancy. International Journal of Cancer, 2004, 111, 373-380.	5.1	78
32	A Systematic Analysis of Human Papillomavirus (HPV) E6 PDZ Substrates Identifies MAGI-1 as a Major Target of HPV Type 16 (HPV-16) and HPV-18 Whose Loss Accompanies Disruption of Tight Junctions. Journal of Virology, 2011, 85, 1757-1764.	3.4	74
33	High-Risk Human Papillomavirus E6 Oncoproteins Interact with 14-3-3ζ in a PDZ Binding Motif-Dependent Manner. Journal of Virology, 2013, 87, 1586-1595.	3.4	74
34	Changes in expression of the human homologue of the Drosophila discs large tumour suppressor protein in high-grade premalignant cervical neoplasias. Carcinogenesis, 2002, 23, 1791-1796.	2.8	70
35	The PTPN14 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7. Journal of Virology, 2017, 91, .	3.4	68
36	The stability of the human papillomavirus E6 oncoprotein is E6AP dependent. Virology, 2009, 393, 7-10.	2.4	66

#	Article	IF	CITATIONS
37	Differential regulation of human papillomavirus E6 by protein kinase A: conditional degradation of human discs large protein by oncogenic E6. Oncogene, 2000, 19, 5884-5891.	5.9	64
38	Repression of p53 Transcriptional Activity by the HPV E7 Proteins. Virology, 1997, 227, 255-259.	2.4	62
39	Analysis of Multiple HPV E6 PDZ Interactions Defines Type-Specific PDZ Fingerprints That Predict Oncogenic Potential. PLoS Pathogens, 2016, 12, e1005766.	4.7	61
40	Human tumour viruses and the deregulation of cell polarity in cancer. Nature Reviews Cancer, 2012, 12, 877-886.	28.4	60
41	The Role of Protein Kinase A Regulation of the E6 PDZ-Binding Domain during the Differentiation-Dependent Life Cycle of Human Papillomavirus Type 18. Journal of Virology, 2013, 87, 9463-9472.	3.4	56
42	E6 and E7 from Human Papillomavirus Type 16 Cooperate To Target the PDZ Protein Na/H Exchange Regulatory Factor 1. Journal of Virology, 2011, 85, 8208-8216.	3.4	55
43	A Novel PDZ Domain Interaction Mediates the Binding between Human Papillomavirus 16 L2 and Sorting Nexin 27 and Modulates Virion Trafficking. Journal of Virology, 2015, 89, 10145-10155.	3.4	55
44	Regulation of the Human Papillomavirus Type 18 E6/E6AP Ubiquitin Ligase Complex by the HECT Domain-Containing Protein EDD. Journal of Virology, 2011, 85, 3120-3127.	3.4	53
45	Human papillomavirus E6 and E7: What remains?. Tumour Virus Research, 2021, 11, 200213.	3.8	53
46	Degradation of hDlg and MAGIs by human papillomavirus E6 is E6-AP-independent. Journal of General Virology, 2004, 85, 2815-2819.	2.9	51
47	Comparative Analysis of the Intracellular Location of the High- and Low-Risk Human Papillomavirus Oncoproteins. Virology, 2002, 293, 20-25.	2.4	49
48	The Human Papillomavirus (HPV) E6* Proteins from High-Risk, Mucosal HPVs Can Direct Degradation of Cellular Proteins in the Absence of Full-Length E6 Protein. Journal of Virology, 2009, 83, 9863-9874.	3.4	49
49	Stabilization of HPV16 E6 protein by PDZ proteins, and potential implications for genome maintenance. Virology, 2011, 414, 137-145.	2.4	49
50	Inhibition of E6 induced degradation of p53 is not sufficient for stabilization of p53 protein in cervical tumour derived cell lines. Oncogene, 1999, 18, 3309-3315.	5.9	48
51	The E6E7 oncoproteins of cutaneous human papillomavirus type 38 interfere with the interferon pathway. Virology, 2008, 377, 408-418.	2.4	48
52	Inhibition of E6-induced Degradation of its Cellular Substrates by Novel Blocking Peptides. Journal of Molecular Biology, 2004, 335, 971-985.	4.2	46
53	Differential Phosphorylation of the HPV-16 E7 Oncoprotein during the Cell Cycle. Virology, 2000, 276, 388-394.	2.4	45
54	Restoration of MAGI-1 Expression in Human Papillomavirus-Positive Tumor Cells Induces Cell Growth Arrest and Apoptosis. Journal of Virology, 2014, 88, 7155-7169.	3.4	45

#	Article	IF	CITATIONS
55	Proteasome-mediated regulation of the hDlg tumour suppressor protein. Journal of Cell Science, 2001, 114, 4285-4292.	2.0	45
56	SNX17 Facilitates Infection with Diverse Papillomavirus Types. Journal of Virology, 2013, 87, 1270-1273.	3.4	44
57	The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses, 2021, 13, 1892.	3.3	44
58	The HPV-16 E7 oncoprotein binds Skip and suppresses its transcriptional activity. Oncogene, 2001, 20, 7677-7685.	5.9	41
59	Regulation of the Discs Large Tumor Suppressor by a Phosphorylation-dependent Interaction with the β-TrCP Ubiquitin Ligase Receptor. Journal of Biological Chemistry, 2003, 278, 42477-42486.	3.4	41
60	Analysis of specificity determinants in the interactions of different HPV E6 proteins with their PDZ domain-containing substrates. Virology, 2008, 376, 371-378.	2.4	40
61	Human papillomavirus (HPV)â€18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Molecular Oncology, 2014, 8, 533-543.	4.6	39
62	A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Letters, 2020, 470, 115-125.	7.2	39
63	Interaction of the Human Papillomavirus E6 Oncoprotein with Sorting Nexin 27 Modulates Endocytic Cargo Transport Pathways. PLoS Pathogens, 2016, 12, e1005854.	4.7	39
64	Cancer-Causing Human Papillomavirus E6 Proteins Display Major Differences in the Phospho-Regulation of Their PDZ Interactions. Journal of Virology, 2015, 89, 1579-1586.	3.4	38
65	HPV Oncoproteins and the Ubiquitin Proteasome System: A Signature of Malignancy?. Pathogens, 2020, 9, 133.	2.8	36
66	The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8. Virology, 2014, 450-451, 146-152.	2.4	35
67	Chimaeric HPV E6 proteins allow dissection of the proteolytic pathways regulating different E6 cellular target proteins. Oncogene, 2002, 21, 8140-8148.	5.9	33
68	Modification of Human Papillomavirus Minor Capsid Protein L2 by Sumoylation. Journal of Virology, 2010, 84, 11585-11589.	3.4	33
69	The Invasive Capacity of HPV Transformed Cells Requires the hDlg-Dependent Enhancement of SGEF/RhoG Activity. PLoS Pathogens, 2012, 8, e1002543.	4.7	33
70	Mutational analysis of the discs large tumour suppressor identifies domains responsible for human papillomavirus type 18 E6-mediated degradation. Journal of General Virology, 2002, 83, 283-289.	2.9	33
71	The HPV-18 E7 CKII phospho acceptor site is required for maintaining the transformed phenotype of cervical tumour-derived cells. PLoS Pathogens, 2019, 15, e1007769.	4.7	32
72	Human papillomavirus infection requires the TSG101 component of the ESCRT machinery. Virology, 2014, 460-461, 83-90.	2.4	31

#	Article	IF	CITATIONS
73	Comparative transforming potential of different human papillomaviruses associated with non-melanoma skin cancer. Virology, 2008, 371, 374-379.	2.4	30
74	CDK phosphorylation of the discs large tumour suppressor controls its localisation and stability. Journal of Cell Science, 2009, 122, 65-74.	2.0	30
75	A Novel Interaction between hScrib and PP1 \hat{I}^3 Downregulates ERK Signaling and Suppresses Oncogene-Induced Cell Transformation. PLoS ONE, 2013, 8, e53752.	2.5	30
76	HPV-18 E6*I modulates HPV-18 full-length E6 functions in a cell cycle dependent manner. International Journal of Cancer, 2004, 110, 928-933.	5.1	29
77	Mechano-Dependent Phosphorylation of the PDZ-Binding Motif of CD97/ADGRE5 Modulates Cellular Detachment. Cell Reports, 2018, 24, 1986-1995.	6.4	29
78	ZASP Interacts with the Mechanosensing Protein Ankrd2 and p53 in the Signalling Network of Striated Muscle. PLoS ONE, 2014, 9, e92259.	2.5	29
79	In Vivo Functional Selection Identifies Cardiotrophin-1 as a Cardiac Engraftment Factor for Mesenchymal Stromal Cells. Circulation, 2017, 136, 1509-1524.	1.6	28
80	Papillomaviruses and Endocytic Trafficking. International Journal of Molecular Sciences, 2018, 19, 2619.	4.1	27
81	Ubiquitination and proteasome degradation of the E6 proteins of human papillomavirus types 11 and 18. Journal of General Virology, 2004, 85, 1419-1426.	2.9	27
82	Regulation of the hDlg/hScrib/Hugl-1 tumour suppressor complex. Experimental Cell Research, 2008, 314, 3306-3317.	2.6	26
83	HPV E6 oncoprotein as a potential therapeutic target in HPV related cancers. Expert Opinion on Therapeutic Targets, 2013, 17, 1357-1368.	3.4	26
84	A naturally occurring variant of HPV-16 E7 exerts increased transforming activity through acquisition of an additional phospho-acceptor site. Virology, 2017, 500, 218-225.	2.4	26
85	The Human Papillomavirus E6 PDZ Binding Motif Links DNA Damage Response Signaling to E6 Inhibition of p53 Transcriptional Activity. Journal of Virology, 2018, 92, .	3.4	26
86	Upsetting the Balance: When Viruses Manipulate Cell Polarity Control. Journal of Molecular Biology, 2018, 430, 3481-3503.	4.2	25
87	The role of inflammation in HPV infection of the Oesophagus. BMC Cancer, 2013, 13, 185.	2.6	24
88	The high-risk HPV E6 oncoprotein preferentially targets phosphorylated nuclear forms of hDlg. Virology, 2009, 387, 1-4.	2.4	23
89	Interactions between E6AP and E6 proteins from alpha and beta HPV types. Virology, 2013, 435, 357-362.	2.4	23
90	The high-risk HPV E6 target scribble (hScrib) is required for HPV E6 expression in cervical tumour-derived cell lines. Papillomavirus Research (Amsterdam, Netherlands), 2016, 2, 70-77.	4.5	23

#	Article	IF	CITATIONS
91	Human Papillomavirus Infectious Entry and Trafficking Is a Rapid Process. Journal of Virology, 2015, 89, 8727-8732.	3.4	22
92	The VPS4 component of the ESCRT machinery plays an essential role in HPV infectious entry and capsid disassembly. Scientific Reports, 2017, 7, 45159.	3.3	22
93	Differential Regulation of Cell-Cell Contact, Invasion and Anoikis by hScrib and hDlg in Keratinocytes. PLoS ONE, 2012, 7, e40279.	2.5	21
94	SGEF forms a complex with Scribble and Dlg1 and regulates epithelial junctions and contractility. Journal of Cell Biology, 2019, 218, 2699-2725.	5.2	21
95	Regulation of the DLG tumor suppressor by βâ€catenin. International Journal of Cancer, 2012, 131, 2223-2233.	5.1	18
96	PDZRN3/LNX3 Is a Novel Target of Human Papillomavirus Type 16 (HPV-16) and HPV-18 E6. Journal of Virology, 2015, 89, 1439-1444.	3.4	15
97	Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation. Journal of Virology, 2018, 92, .	3.4	15
98	Complementation of a p300/CBP defective-binding mutant of adenovirus E1a by human papillomavirus E6 proteins. Journal of General Virology, 2002, 83, 829-833.	2.9	14
99	Monitoring HPV-16 E7 phosphorylation events. Virology, 2017, 503, 70-75.	2.4	14
100	PDZ Domain-Containing Protein NHERF-2 Is a Novel Target of Human Papillomavirus 16 (HPV-16) and HPV-18. Journal of Virology, 2019, 94, .	3.4	14
101	Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein. Oncotarget, 2017, 8, 19491-19506.	1.8	14
102	Regulation of translational efficiency by different splice variants of the Disc large 1 oncosuppressor 5′â€UTR. FEBS Journal, 2011, 278, 2596-2608.	4.7	13
103	A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor. PLoS Pathogens, 2016, 12, e1005789.	4.7	12
104	Human papillomavirus oncoproteins and post-translational modifications: generating multifunctional hubs for overriding cellular homeostasis. Biological Chemistry, 2020, 401, 585-599.	2.5	12
105	Human Papillomavirus 16 L2 Recruits both Retromer and Retriever Complexes during Retrograde Trafficking of the Viral Genome to the Cell Nucleus. Journal of Virology, 2021, 95, .	3.4	12
106	Cloning and functional analysis of the promoter region of the human Disc large gene. Gene, 2008, 424, 87-95.	2.2	11
107	The mechanisms and implications of hScrib regulation of ERK. Small GTPases, 2010, 1, 108-112.	1.6	11
108	Interaction of HPV E6 oncoproteins with specific proteasomal subunits. Virology, 2013, 446, 389-396.	2.4	11

#	Article	IF	CITATIONS
109	Phosphorylation of Human Papillomavirus Type 16 L2 Contributes to Efficient Virus Infectious Entry. Journal of Virology, 2019, 93, .	3.4	11
110	Human Papillomavirus Infection Requires the CCT Chaperonin Complex. Journal of Virology, 2021, 95, .	3.4	11
111	Regulation of the human papillomavirus oncoproteins by differential phosphorylation. Molecular and Cellular Biochemistry, 2001, 227, 137-144.	3.1	10
112	Characterizing the spatio-temporal role of sorting nexin 17 in human papillomavirus trafficking. Journal of General Virology, 2017, 98, 715-725.	2.9	10
113	Identification of E6AP-independent degradation targets of HPV E6. Journal of General Virology, 2019, 100, 1674-1679.	2.9	10
114	p53 polymorphism and risk of cervical cancer. Nature, 1998, 396, 532-532.	27.8	9
115	Human Papillomavirus 16 (HPV-16), HPV-18, and HPV-31 E6 Override the Normal Phosphoregulation of E6AP Enzymatic Activity. Journal of Virology, 2017, 91, .	3.4	9
116	Oncogenic comparison of human papillomavirus type 58 E7 variants. Journal of Cellular and Molecular Medicine, 2019, 23, 1517-1527.	3.6	9
117	HPV-16 virions can remain infectious for 2 weeks on senescent cells but require cell cycle re-activation to allow virus entry. Scientific Reports, 2018, 8, 811.	3.3	8
118	Human Papillomavirus 58 E7 T20I/G63S Variant Isolated from an East Asian Population Possesses High Oncogenicity. Journal of Virology, 2020, 94, .	3.4	8
119	Oncogenicitiy Comparison of Human Papillomavirus Type 52 E6 Variants. Journal of General Virology, 2019, 100, 484-496.	2.9	8
120	Acquisition of a phospho-acceptor site enhances HPV E6 PDZ-binding motif functional promiscuity. Journal of General Virology, 2020, 101, 954-962.	2.9	8
121	The biology of papillomavirus PDZ associations: what do they offer papillomaviruses?. Current Opinion in Virology, 2021, 51, 119-126.	5.4	8
122	Clinical validation of full HR-HPV genotyping HPV Selfy assay according to the international guidelines for HPV test requirements for cervical cancer screening on clinician-collected and self-collected samples. Journal of Translational Medicine, 2022, 20, 231.	4.4	8
123	The Dimeric Form of HPV16 E6 Is Crucial to Drive YAP/TAZ Upregulation through the Targeting of hScrib. Cancers, 2021, 13, 4083.	3.7	7
124	Characterization of Novel Transcripts of Human Papillomavirus Type 16 Using Cap Analysis Gene Expression Technology. Journal of Virology, 2015, 89, 2448-2452.	3.4	6
125	Spotlight on COVIDâ€19: from biology to therapy and prevention. FEBS Journal, 2020, 287, 3606-3608.	4.7	6
126	In Vitro Assays of Substrate Degradation Induced by High-Risk HPV E6 Oncoproteins. , 2005, 119, 411-418.		5

#	Article	IF	CITATIONS
127	HPV-16 impairs the subcellular distribution and levels of expression of protein phosphatase 1Î ³ in cervical malignancy. BMC Cancer, 2015, 15, 230.	2.6	5
128	Choosing the right path: membrane trafficking and infectious entry of small DNA tumor viruses. Current Opinion in Cell Biology, 2019, 59, 112-120.	5.4	5
129	Loss of the E6AP Ubiquitin Ligase Induces p53-Dependent Phosphorylation of Human Papillomavirus 18 E6 in Cells Derived from Cervical Cancer. Journal of Virology, 2022, 96, JVI0150321.	3.4	5
130	Diverse Papillomavirus Types Induce Endosomal Tubulation. Frontiers in Cellular and Infection Microbiology, 2019, 9, 175.	3.9	4
131	Human DLG1 and SCRIB Are Distinctly Regulated Independently of HPV-16 during the Progression of Oropharyngeal Squamous Cell Carcinomas: A Preliminary Analysis. Cancers, 2021, 13, 4461.	3.7	4
132	Increased Growth of a Newly Established Mouse Epithelial Cell Line Transformed with HPV-16 E7 in Diabetic Mice. PLoS ONE, 2016, 11, e0164490.	2.5	4
133	High risk HPV E6 oncoproteins impair the subcellular distribution of the four and a half LIM-only protein 2 (FHL2). Virology, 2015, 476, 100-105.	2.4	2
134	Spotlight on COVIDâ€19: eighteen months on. FEBS Journal, 2021, 288, 4992-4995.	4.7	2
135	Inhibition of kinase IKKβ suppresses cellular abnormalities induced by the human papillomavirus oncoprotein HPV 18E6. Scientific Reports, 2021, 11, 1111.	3.3	2
136	Viral oncoproteins and ubiquitination: accessing a cellular toolbox for modifying protein function. FEBS Journal, 2017, 284, 3168-3170.	4.7	1
137	A new approach for screening cervical cancer by characterization of transcripts using CAGE technology Journal of Clinical Oncology, 2015, 33, e16514-e16514.	1.6	1
138	Highlights in Virology: Viral miRNAs and Flaviviruses. Frontiers in Cellular and Infection Microbiology, 2019, 9, 54.	3.9	0
139	Words of Advice: How to be a good Principal Investigator. FEBS Journal, 2021, 288, 3973-3977.	4.7	0
140	Welcome to Tumour Virus Research. Tumour Virus Research, 2021, 11, 200211.	3.8	0