Jm Forbes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926880/publications.pdf

Version: 2024-02-01

330 papers

16,510 citations

67 h-index 24179 110 g-index

342 all docs 342 docs citations

times ranked

342

3033 citing authors

#	Article	IF	CITATIONS
1	Solar Rotation Effects in Martian Thermospheric Density as Revealed by Five Years of MAVEN Observations. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	7
2	The Origins of Longâ€Term Variability in Martian Upper Atmospheric Densities. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	6
3	Atmospheric Lunar Tide in the Low Latitude Thermosphereâ€lonosphere. Geophysical Research Letters, 2022, 49, .	1.5	4
4	Vertical Coupling by Solar Semidiurnal Tides in the Thermosphere From ICON/MIGHTI Measurements. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	16
5	The Wave Origins of Longitudinal Structures in ExoMars Trace Gas Orbiter (TGO) Aerobraking Densities. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028769.	0.8	5
6	Tidal Effects on the Longitudinal Structures of the Martian Thermosphere and Topside Ionosphere Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028562.	0.8	12
7	Mesospheric Q2DW Interactions With Four Migrating Tides at 53°N Latitude: Zonal Wavenumber Identification Through Dualâ€Station Approaches. Geophysical Research Letters, 2021, 48, e2020GL092237.	1.5	5
8	Unusual Quasi 10â€Day Planetary Wave Activity and the Ionospheric Response During the 2019 Southern Hemisphere Sudden Stratospheric Warming. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029286.	0.8	22
9	Atmosphereâ€lonosphere (Aâ€l) Coupling as Viewed by ICON: Dayâ€toâ€Day Variability Due to Planetary Wave (PW)â€Tide Interactions. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028927.	0.8	14
10	Quasiâ€2â€Day Wave in Lowâ€Latitude Atmospheric Winds as Viewed From the Ground and Space During January–March, 2020. Geophysical Research Letters, 2021, 48, e2021GL093466.	1.5	13
11	Q2DWâ€tide and â€ionosphere interactions as observed from ICON and groundâ€based radars. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029961.	0.8	4
12	Troposphereâ€Mesosphere Coupling by Convectively Forced Gravity Waves During Southern Hemisphere Monsoon Season as Viewed by AIM/CIPS. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029734.	0.8	7
13	Regulation of ionospheric plasma velocities by thermospheric winds. Nature Geoscience, 2021, 14, 893-898.	5.4	25
14	Quasiâ€10â€Day Wave and Semidiurnal Tide Nonlinear Interactions During the Southern Hemispheric SSW 2019 Observed in the Northern Hemispheric Mesosphere. Geophysical Research Letters, 2020, 47, e2020GL091453.	1.5	16
15	Solar Tides in the Middle and Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028140.	0.8	27
16	Ultrafast Kelvin Wave Variations in the Surface Magnetic Field. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028488.	0.8	8
17	Dynamics and Electrodynamics of an Ultraâ∈Fast Kelvin Wave (UFKW) Packet in the Ionosphereâ∈Thermosphere (IT). Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027856.	0.8	8
18	Highâ€Order Solar Migrating Tides Quench at SSW Onsets. Geophysical Research Letters, 2020, 47, e2019GL086778.	1.5	15

#	Article	IF	Citations
19	Planetary Wave (PW) Generation in the Thermosphere Driven by the PWâ€Modulated Tidal Spectrum. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027704.	0.8	16
20	Sensitivity study for ICON tidal analysis. Progress in Earth and Planetary Science, 2020, 7, 18.	1.1	23
21	The Effects of Vertically Propagating Tides on the Mean Dynamical Structure of the Lower Thermosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 7202-7219.	0.8	7
22	Lunar Tide in the F Region Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 7654-7669.	0.8	6
23	The nature and origins of the day-to-day variability in Earth's surface magnetic field. Advances in Space Research, 2019, 64, 2012-2025.	1.2	2
24	Zonally Symmetric Oscillations of the Thermosphere at Planetary Wave Periods. Journal of Geophysical Research: Space Physics, 2018, 123, 4110-4128.	0.8	31
25	Exploring Waveâ€Wave Interactions in a General Circulation Model. Journal of Geophysical Research: Space Physics, 2018, 123, 827-847.	0.8	17
26	Kelvin wave coupling from TIMED and GOCE: Inter/intra-annual variability and solar activity effects. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 171, 176-187.	0.6	15
27	The Ionospheric Connection Explorer Mission: Mission Goals and Design. Space Science Reviews, 2018, 214, 1.	3.7	152
28	Polar Region Variability in the Lower Thermosphere of Mars From Odyssey and Reconnaissance Orbiter Aerobraking Measurements. Journal of Geophysical Research: Space Physics, 2018, 123, 8664-8687.	0.8	7
29	Oscillation of the Ionosphere at Planetaryâ€Wave Periods. Journal of Geophysical Research: Space Physics, 2018, 123, 7634-7649.	0.8	37
30	Nutrition support and glycaemic variability in critically ill patients. Clinical Nutrition, 2018, 37, S171.	2.3	2
31	Solar Terminator Waves in Surface Pressure Observations. Geophysical Research Letters, 2018, 45, 5213-5219.	1.5	7
32	Seminal Evidence of a 2.5â€Sol Ultraâ€Fast Kelvin Wave in Mars' Middle and Upper Atmosphere. Geophysical Research Letters, 2018, 45, 6324-6333.	1.5	5
33	The quasiâ€6Âday wave and its interactions with solar tides. Journal of Geophysical Research: Space Physics, 2017, 122, 4764-4776.	0.8	48
34	On the Specification of Upward-Propagating Tides for ICON Science Investigations. Space Science Reviews, 2017, 212, 697-713.	3.7	21
35	Wave coupling from the lower to the middle thermosphere: Effects of mean winds and dissipation. Journal of Geophysical Research: Space Physics, 2017, 122, 7781-7797.	0.8	21
36	Sources of Ionospheric Variability at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 9670-9684.	0.8	40

#	Article	IF	CITATIONS
37	Solar cycle variability in mean thermospheric composition and temperature induced by atmospheric tides. Journal of Geophysical Research: Space Physics, 2016, 121, 5837-5855.	0.8	17
38	Planetary wave variability of <i>Sq</i> currents. Journal of Geophysical Research: Space Physics, 2016, 121, 11,316.	0.8	11
39	Comparative Analysis of Satellite Aerodynamics and Its Application to Space-Object Identification. Journal of Spacecraft and Rockets, 2016, 53, 876-886.	1.3	4
40	Equatorial vertical drift modulation by the lunar and solar semidiurnal tides during the 2013 sudden stratospheric warming. Journal of Geophysical Research: Space Physics, 2016, 121, 1658-1668.	0.8	31
41	Generation of secondary waves arising from nonlinear interaction between the quasi 2Âday wave and the migrating diurnal tide. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7762-7780.	1.2	23
42	Gravity waveâ€induced variability of the middle thermosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 6914-6923.	0.8	34
43	Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements. Journal of Geophysical Research: Space Physics, 2016, 121, 3699-3721.	0.8	4
44	Tides in the mesopause region over Antarctica: Comparison of whole atmosphere model simulations with groundâ€based observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1156-1169.	1.2	4
45	Prolonged multiple excitation of largeâ€scale Traveling Atmospheric Disturbances (TADs) by successive and interacting coronal mass ejections. Journal of Geophysical Research: Space Physics, 2016, 121, 2662-2668.	0.8	7
46	Observations of a largeâ€scale gravity wave propagating over an extremely large horizontal distance in the thermosphere. Geophysical Research Letters, 2015, 42, 6560-6565.	1.5	13
47	Density prediction in Mars' aerobraking region. Space Weather, 2015, 13, 86-96.	1.3	8
48	Upper thermospheric responses to forcing from above and below during 1-10 April 2010: Results from an ensemble of numerical simulations. Journal of Geophysical Research: Space Physics, 2015, 120, 3160-3174.	0.8	21
49	Lunar semidiurnal tide in the terrestrial airglow. Geophysical Research Letters, 2015, 42, 3553-3559.	1.5	10
50	Quasiâ€10â€day wave in the atmosphere. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,079.	1.2	37
51	Intraannual variability of tides in the thermosphere from model simulations and in situ satellite observations. Journal of Geophysical Research: Space Physics, 2015, 120, 751-765.	0.8	25
52	Wave coupling between the lower and middle thermosphere as viewed from TIMED and GOCE. Journal of Geophysical Research: Space Physics, 2015, 120, 5788-5804.	0.8	39
53	DYNAMICAL METEOROLOGY Atmospheric Tides. , 2015, , 287-297.		15
54	Longâ€term variability of Mars' exosphere based on precise orbital analysis of Mars Global Surveyor and Mars Odyssey. Journal of Geophysical Research E: Planets, 2014, 119, 210-218.	1.5	6

#	Article	IF	CITATIONS
55	Insight into the seasonal asymmetry of nonmigrating tides on Mars. Geophysical Research Letters, 2014, 41, 2631-2636.	1.5	16
56	Solar cycle dependence of middle atmosphere temperatures. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9615-9625.	1.2	16
57	New perspectives on thermosphere tides: 1. Lower thermosphere spectra and seasonal-latitudinal structures. Earth, Planets and Space, 2014, 66, .	0.9	53
58	lonospheric electron density response to solar flares as viewed by Digisondes. Space Weather, 2014, 12, 205-216.	1.3	16
59	Impacts of vertically propagating tides on the mean state of the ionosphereâ€thermosphere system. Journal of Geophysical Research: Space Physics, 2014, 119, 2197-2213.	0.8	63
60	Lunar tide contribution to thermosphere weather. Space Weather, 2014, 12, 538-551.	1.3	11
61	Tidalâ€induced net transport effects on the oxygen distribution in the thermosphere. Geophysical Research Letters, 2014, 41, 5272-5279.	1.5	53
62	Improved shortâ€ŧerm variability in the thermosphereâ€ionosphereâ€mesosphereâ€electrodynamics general circulation model. Journal of Geophysical Research: Space Physics, 2014, 119, 6623-6630.	0.8	23
63	Lunar-solar interactions in the equatorial electrojet. Geophysical Research Letters, 2014, 41, 3026-3031.	1.5	11
64	Lunar tide in the thermosphere and weakening of the northern polar vortex. Geophysical Research Letters, 2014, 41, 8201-8207.	1.5	48
65	New perspectives on thermosphere tides: 2. Penetration to the upper thermosphere. Earth, Planets and Space, 2014, 66, 122.	0.9	27
66	Quasiâ€twoâ€day wave structure, interannual variability, and tidal interactions during the 2002–2011 decade. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2241-2260.	1.2	40
67	Lunar semidiurnal tide in the thermosphere under solar minimum conditions. Journal of Geophysical Research: Space Physics, 2013, 118, 1788-1801.	0.8	54
68	Lunar tidal winds between 80 and 110 km from UARS/HRDI wind measurements. Journal of Geophysical Research: Space Physics, 2013, 118, 5296-5304.	0.8	16
69	A decadeâ€long climatology of terdiurnal tides using TIMED/SABER observations. Journal of Geophysical Research: Space Physics, 2013, 118, 4534-4550.	0.8	27
70	Nonâ€migrating tides in the ionosphereâ€thermosphere: In situ versus tropospheric sources. Journal of Geophysical Research: Space Physics, 2013, 118, 2438-2451.	0.8	61
71	Effect of Density Model Time-Delay Errors on Orbit Prediction. Journal of Spacecraft and Rockets, 2013, 50, 1096-1105.	1.3	2
72	Middle and upper thermosphere density structures due to nonmigrating tides. Journal of Geophysical Research, 2012, 117 , $n/a-n/a$.	3.3	12

#	Article	IF	CITATIONS
73	Lunar tide amplification during the January 2009 stratosphere warming event: Observations and theory. Journal of Geophysical Research, 2012, 117, .	3.3	105
74	lonosphere response to recurrent geomagnetic activity in 1974. Journal of Geophysical Research, 2012, 117 , .	3.3	9
75	Impact of tidal density variability on orbital and reentry predictions. Space Weather, 2012, 10, .	1.3	24
76	The quasi 2 day wave and spatial $\hat{\epsilon}$ temporal variability of the OH emission and ionosphere. Journal of Geophysical Research, 2012, 117, .	3.3	39
77	Quasiâ€twoâ€day waveâ€tide interactions as revealed in satellite observations. Journal of Geophysical Research, 2012, 117, .	3.3	29
78	Diurnal tides from the troposphere to the lower mesosphere as deduced from TIMED/SABER satellite data and six global reanalysis data sets. Journal of Geophysical Research, 2012, 117, .	3.3	55
79	Seasonal-latitudinal variation of the eastward-propagating diurnal tide with zonal wavenumber 3 in the MLT: Influences of heating and background wind distribution. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 78-79, 37-43.	0.6	18
80	First detection of wave interactions in the middle atmosphere of Mars. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	7
81	Wave-driven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: What contributes to the "wave 4�. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	105
82	Simulated planetary wave-tide interactions in the atmosphere of Mars. Journal of Geophysical Research, 2011, 116, .	3.3	8
83	Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	131
84	Sun-synchronous thermal tides in exosphere temperature from CHAMP and GRACE accelerometer measurements. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	17
85	Response of thermosphere density to changes in interplanetary magnetic field sector polarity. Journal of Geophysical Research, $2011, 116, n/a-n/a$.	3.3	11
86	Electrodynamic response of the ionosphere to high-speed solar wind streams. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	19
87	A new perspective on gravity waves in the Martian atmosphere: Sources and features. Journal of Geophysical Research, $2011, 116, \ldots$	3.3	17
88	Latitudinal variations of middle thermosphere: Observations and modeling. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	8
89	Longitudinal variations in the <i>F</i> region ionosphere and the topside ionosphere-plasmasphere: Observations and model simulations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	61
90	Seasonal and longitudinal variations of the solar quiet (<i>Sq</i>) current system during solar minimum determined by CHAMP satellite magnetic field observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	46

#	Article	IF	Citations
91	A collaborative study on temperature diurnal tide in the midlatitude mesopause region (41°N, 105°W) with Na lidar and TIMED/SABER observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72, 541-549.	0.6	25
92	Global distribution and climatological features of the 5–6-day planetary waves seen in the SABER/TIMED temperatures (2002–2007). Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72, 26-37.	0.6	44
93	Large-scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72, 1057-1066.	0.6	20
94	Low-latitude thermal semidiurnal tide: longitudinal and seasonal variations based on ground-based measurements from Arecibo and Maui, space-based measurements by SABER, and modeling with GSWM-02. , 2010, , .		0
95	lonosphere response to recurrent geomagnetic activity: Local time dependency. Journal of Geophysical Research, 2010, 115, .	3.3	43
96	Longitudinal variation of tides in the MLT region: 1 . Tides driven by tropospheric net radiative heating. Journal of Geophysical Research, 2010, 115 , .	3.3	77
97	Longitudinal variation of tides in the MLT region: 2. Relative effects of solar radiative and latent heating. Journal of Geophysical Research, 2010, 115, .	3.3	74
98	Principal modes of thermospheric density variability: Empirical orthogonal function analysis of CHAMP 2001–2008 data. Journal of Geophysical Research, 2010, 115, .	3.3	38
99	Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly. Journal of Geophysical Research, 2010, 115 , .	3.3	35
100	A new interpretation of Mars aerobraking variability: Planetary waveâ€tide interactions. Journal of Geophysical Research, 2010, 115, .	3.3	29
101	Global structure of the lunar tide in ionospheric total electron content. Geophysical Research Letters, 2010, 37, .	1.5	34
102	Anomalous behavior of the thermosphere during solar minimum observed by CHAMP and GRACE. Journal of Geophysical Research, 2010, 115, .	3.3	40
103	On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms. Journal of Geophysical Research, 2010, 115, .	3.3	17
104	Evidence for stratosphere sudden warmingâ€ionosphere coupling due to vertically propagating tides. Geophysical Research Letters, 2010, 37, .	1.5	153
105	Sensitivity of Orbit Predictions to Density Variability. Journal of Spacecraft and Rockets, 2009, 46, 1214-1230.	1.3	28
106	Planetary waves observed by TIMED/SABER in coupling the stratosphere–mesosphere–lower thermosphere during the winter of 2003/2004: Part 1—Comparison with the UKMO temperature results. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 61-74.	0.6	54
107	Planetary waves observed by TIMED/SABER in coupling the stratosphere–mesosphere–lower thermosphere during the winter of 2003/2004: Part 2—Altitude and latitude planetary wave structure. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 75-87.	0.6	73
108	Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations. Advances in Space Research, 2009, 43, 369-376.	1.2	45

#	Article	IF	Citations
109	Semi-empirical model of middle atmosphere wind from the ground to the lower thermosphere. Advances in Space Research, 2009, 43, 239-246.	1.2	24
110	Kelvin waves in stratosphere, mesosphere and lower thermosphere temperatures as observed by TIMED/SABER during 2002–2006. Earth, Planets and Space, 2009, 61, 447-453.	0.9	46
111	The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability. Earth, Planets and Space, 2009, 61, 493-503.	0.9	37
112	Upward propagating tidal effects across the E- and F-regions of the ionosphere. Earth, Planets and Space, 2009, 61, 505-512.	0.9	29
113	Modulation of the equatorial Fâ€region by the quasiâ€16â€day planetary wave. Geophysical Research Letters, 2009, 36, .	1.5	36
114	Surfaceâ€exosphere coupling due to thermal tides. Geophysical Research Letters, 2009, 36, .	1.5	102
115	Mars W cloud: Evidence of nighttime ice depositions. Geophysical Research Letters, 2009, 36, .	1.5	1
116	Solar terminator wave in a Mars general circulation model. Geophysical Research Letters, 2009, 36, .	1.5	10
117	Solar terminator wave and its relation to the atmospheric tide. Journal of Geophysical Research, 2009, 114 , .	3.3	41
118	Interannual variability in the longitudinal structure of the lowâ€latitude ionosphere due to the El Niño–Southern Oscillation. Journal of Geophysical Research, 2009, 114, .	3.3	22
119	Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: Longâ€duration positive storm effect. Journal of Geophysical Research, 2009, 114, .	3.3	68
120	Longitude variations of the solar semidiurnal tides in the mesosphere and lower thermosphere at low latitudes observed from ground and space. Journal of Geophysical Research, 2009, 114, .	3.3	17
121	Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects. Journal of Geophysical Research, 2009, 114, .	3.3	191
122	Relative intensities of middle atmosphere waves. Journal of Geophysical Research, 2009, 114, .	3.3	55
123	Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances. Geophysical Research Letters, 2009, 36, .	1.5	86
124	Rapid response of the thermosphere to variations in Joule heating. Journal of Geophysical Research, 2009, 114, .	3.3	50
125	Reversed ionospheric convections during the November 2004 storm: Impact on the upper atmosphere. Journal of Geophysical Research, 2009, 114 , .	3.3	18
126	Dependence of the highâ€latitude thermospheric densities on the interplanetary magnetic field. Journal of Geophysical Research, 2009, 114, .	3.3	24

#	Article	IF	Citations
127	Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophysical Research Letters, 2008, 35, .	1.5	128
128	Ionosphere response to solar wind highâ€speed streams. Geophysical Research Letters, 2008, 35, .	1.5	100
129	Solar flux variability of Mars' exosphere densities and temperatures. Geophysical Research Letters, 2008, 35, .	1.5	69
130	Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophysical Research Letters, 2008, 35, .	1.5	118
131	Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED. Geophysical Research Letters, 2008, 35, .	1.5	88
132	Tidal variability in the ionospheric dynamo region. Journal of Geophysical Research, 2008, 113 , .	3.3	283
133	Sensitivity of Orbit Predictions to Density Variability. , 2008, , .		0
134	Response Characteristics of Orbit-Mean Satellite Drag to Varying Geomagnetic Conditions. , 2008, , .		1
135	A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite. Geophysical Research Letters, 2008, 35, .	1.5	68
136	Thermospheric nitric oxide variability induced by nonmigrating tides. Geophysical Research Letters, 2008, 35, .	1.5	48
137	Intraâ€annual variability of the lowâ€latitude ionosphere due to nonmigrating tides. Geophysical Research Letters, 2008, 35, .	1.5	68
138	Effects of vertically propagating thermal tides on the mean structure and dynamics of Mars' lower thermosphere. Geophysical Research Letters, 2008, 35, .	1.5	24
139	Interannual and latitudinal variability of the thermosphere density annual harmonics. Journal of Geophysical Research, 2008, 113, .	3.3	27
140	Thermospheric density oscillations due to periodic solar wind highâ€speed streams. Journal of Geophysical Research, 2008, 113, .	3.3	111
141	Global thermospheric density variations caused by highâ€speed solar wind streams during the declining phase of solar cycle 23. Journal of Geophysical Research, 2008, 113, .	3.3	81
142	Changes in the longitudinal structure of the lowâ€latitude ionosphere during the July 2004 sequence of geomagnetic storms. Journal of Geophysical Research, 2008, 113, .	3.3	16
143	Topographic connections with density waves in Mars' aerobraking regime. Journal of Geophysical Research, 2008, 113, .	3.3	36
144	Medium―to largeâ€scale density variability as observed by CHAMP. Space Weather, 2008, 6, .	1.3	50

#	Article	IF	CITATIONS
145	Reply by the Authors to G. Koppenwallner. Journal of Spacecraft and Rockets, 2008, 45, 1328-1329.	1.3	5
146	Introduction: New Perspectives on the Satellite Drag Environments of Earth, Mars, and Venus. Journal of Spacecraft and Rockets, 2007, 44, 1153-1153.	1.3	0
147	Storm-Time Equatorial Density Enhancements Observed by CHAMP and GRACE. Journal of Spacecraft and Rockets, 2007, 44, 1154-1159.	1.3	15
148	Satellite Drag Variability at Earth, Mars, and Venus due to Solar Rotation. Journal of Spacecraft and Rockets, 2007, 44, 1160-1164.	1.3	3
149	An eastward propagating two-day wave: Evidence for nonlinear planetary wave and tidal coupling in the mesosphere and lower thermosphere. Geophysical Research Letters, 2007, 34, .	1.5	62
150	Oscillation of Venus' upper atmosphere. Geophysical Research Letters, 2007, 34, .	1.5	9
151	Global observation of traveling atmospheric disturbances (TADs) in the thermosphere. Geophysical Research Letters, 2007, 34, .	1.5	67
152	Effects of solar variability on thermosphere density from CHAMP accelerometer data. Journal of Geophysical Research, 2007, 112 , .	3.3	64
153	Density and Winds in the Thermosphere Deduced from Accelerometer Data. Journal of Spacecraft and Rockets, 2007, 44, 1210-1219.	1.3	163
154	Dynamics of the Thermosphere. Journal of the Meteorological Society of Japan, 2007, 85B, 193-213.	0.7	61
155	Seasonal cycle of nonmigrating diurnal tides in the MLT region due to tropospheric heating rates from the NCEP/NCAR Reanalysis Project. Advances in Space Research, 2007, 39, 1347-1350.	1.2	12
156	Atmospheric Wind Measurements Deduced from Accelerometer Data. , 2006, , .		0
157	Storm-Time Density Enhancements Observed by CHAMP and GRACE. , 2006, , .		0
158	Variability of the Satellite Drag Environments of Earth, Mars and Venus due to Rotation of the Sun. , 2006, , .		2
159	Thermospheric Studies with Mars Global Surveyor. , 2006, , .		7
160	Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during Julyâ \in "September 2002. Journal of Geophysical Research, 2006, 111 , .	3 . 3	159
161	Global and seasonal distribution of gravity wave activity in Mars' lower atmosphere derived from MGS radio occultation data. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	81
162	Monthly tidal temperatures 20–120 km from TIMED/SABER. Journal of Geophysical Research, 2006, 111, .	3.3	186

#	Article	IF	CITATIONS
163	A climatology of tides in the Antarctic mesosphere and lower thermosphere. Journal of Geophysical Research, 2006, 111, .	3.3	72
164	Solar Semidiurnal Tide in the Dusty Atmosphere of Mars. Journals of the Atmospheric Sciences, 2006, 63, 1798-1817.	0.6	27
165	Solar Tides as Revealed by Measurements of Mesosphere Temperature by the MLS Experiment on UARS. Journals of the Atmospheric Sciences, 2006, 63, 1776-1797.	0.6	136
166	Density variability at scales typical of gravity waves observed in Mars' thermosphere by the MGS accelerometer. Geophysical Research Letters, 2006, 33, .	1.5	61
167	Neutral density response to the solar flares of October and November, 2003. Geophysical Research Letters, 2006, 33, .	1.5	87
168	The thermosphere of Venus and its exploration by a Venus Express Accelerometer Experiment. Planetary and Space Science, 2006, 54, 1415-1424.	0.9	10
169	Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. Journal of Geophysical Research, 2006, 111, .	3.3	167
170	Solar Rotation Effects on the Thermospheres of Mars and Earth. Science, 2006, 312, 1366-1368.	6.0	77
171	A space-based climatology of diurnal MLT tidal winds, temperatures and densities from UARS wind measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1533-1543.	0.6	36
172	Thermosphere density variations due to the $15\hat{a}\in$ "24 April 2002 solar events from CHAMP/STAR accelerometer measurements. Journal of Geophysical Research, 2005, 110, .	3.3	78
173	Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. Journal of Geophysical Research, 2005, 110 , .	3.3	184
174	Planetary wave coupling from the stratosphere to the thermosphere during the 2002 Southern Hemisphere pre-stratwarm period. Geophysical Research Letters, 2005, 32, .	1.5	38
175	Climatological lower thermosphere winds as seen by ground-based and space-based instruments. Annales Geophysicae, 2004, 22, 1931-1945.	0.6	10
176	Monthly mean climatology of the prevailing winds and tides in the Arctic mesosphere/lower thermosphere. Annales Geophysicae, 2004, 22, 3395-3410.	0.6	52
177	High- and mid-latitude quasi-2-day waves observed simultaneouslyby four meteor radars during summer 2000. Annales Geophysicae, 2004, 22, 773-788.	0.6	15
178	Mesosphere/lower thermosphere prevailing wind model. Advances in Space Research, 2004, 34, 1755-1762.	1.2	52
179	Tides in the middle and upper atmospheres of Mars and Venus. Advances in Space Research, 2004, 33, 125-131.	1.2	22
180	Nonmigrating tides in the thermosphere of Mars: a quasi-empirical description. Advances in Space Research, 2004, 34, 1690-1695.	1.2	12

#	Article	IF	Citations
181	Longitude variability of the solar semidiurnal tide in the lower thermosphere through assimilation of ground- and space-based wind measurements. Journal of Geophysical Research, 2003, 108, .	3.3	18
182	Nonmigrating diurnal tides in the thermosphere. Journal of Geophysical Research, 2003, 108, .	3.3	135
183	Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. Journal of Geophysical Research, 2003, 108, .	3.3	395
184	Diurnal nonmigrating tides in the tropical lower thermosphere. Earth, Planets and Space, 2003, 55, 419-426.	0.9	39
185	Wave coupling in terrestrial planetary atmospheres. Geophysical Monograph Series, 2002, , 171-190.	0.1	18
186	Nonlinear interactions in the upper atmosphere: Thes= 1 ands= 3 nonmigrating semidiurnal tides. Journal of Geophysical Research, 2002, 107, SIA 3-1-SIA 3-15.	3.3	135
187	Climatological features of mesosphere and lower thermosphere stationary planetary waves within ±40° latitude. Journal of Geophysical Research, 2002, 107, ACL 1-1-ACL 1-14.	3.3	39
188	Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. Journal of Geophysical Research, 2002, 107, ACL 6-1.	3.3	645
189	Nonmigrating tides in the thermosphere of Mars. Journal of Geophysical Research, 2002, 107, 23-1-23-12.	3.3	88
190	Quasiâ€3â€day Kelvin wave and the OI(5577 Ã), OH(6,2) Meinel, and O ₂ (0,1) emissions. Geophysical Research Letters, 2002, 29, 2-1.	1.5	49
191	Mars Global Surveyor radio science electron density profiles : Neutral atmosphere implications. Geophysical Research Letters, 2001, 28, 3091-3094.	1.5	154
192	Simulations of diurnal tides due to tropospheric heating from the NCEP/NCAR Reanalysis Project. Geophysical Research Letters, 2001, 28, 3851-3854.	1.5	32
193	Kelvin wave propagation in the upper atmospheres of Mars and Earth. Advances in Space Research, 2001, 27, 1791-1800.	1.2	12
194	Variability of the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 685-693.	0.6	440
195	The influence of geomagnetic and solar variabilities on lower thermosphere density. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 999-1013.	0.6	42
196	Wave coupling between the lower and upper atmosphere: case study of an ultra-fast Kelvin Wave. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 1603-1621.	0.6	98
197	Intradiurnal wind variations observed in the lower thermosphere over the South Pole. Annales Geophysicae, 2000, 18, 547-554.	0.6	17
198	The quasi 16-day oscillations in the mesosphere and lower thermosphere at Saskatoon (52°N, 107°W), 1980-1996. Journal of Geophysical Research, 2000, 105, 2125-2138.	3.3	68

#	Article	IF	Citations
199	Diurnal Kelvin wave in the atmosphere of Mars: Towards an understanding of 'stationary' density structures observed by the MGS accelerometer. Geophysical Research Letters, 2000, 27, 3563-3566.	1.5	84
200	Upper atmosphere tidal variability due to latent heat release in the tropical troposphere. Advances in Space Research, 1999, 24, 1515-1521.	1.2	5
201	Global transport and localized layering of metallic ions in the upper atmospherer. Annales Geophysicae, 1999, 17, 190-209.	0.6	84
202	Longitudinal structures in lower thermosphere density. Journal of Geophysical Research, 1999, 104, 4373-4385.	3.3	17
203	GSWM-98: Results for migrating solar tides. Journal of Geophysical Research, 1999, 104, 6813-6827.	3.3	307
204	Lamb waves in the lower thermosphere: Observational evidence and global consequences. Journal of Geophysical Research, 1999, 104, 17107-17115.	3.3	35
205	QBO effects on the diurnal tide in the upper atmosphere. Earth, Planets and Space, 1999, 51, 571-578.	0.9	55
206	Dynamics of the lower thermosphere over South Pole from meteor radar wind measurements. Earth, Planets and Space, 1999, 51, 611-620.	0.9	37
207	The summertime 12-h wind oscillation with zonal wavenumber $t=1$ in the lower thermosphere over the South Pole. Annales Geophysicae, 1998, 16, 828-837.	0.6	41
208	Transient eastward-propagating long-period waves observed over the South Pole. Annales Geophysicae, 1998, 16, 1486-1500.	0.6	29
209	Dynamical influences on atomic oxygen and 5577 Ã emission rates in the lower thermosphere. Geophysical Research Letters, 1998, 25, 461-464.	1.5	36
210	The summertime 12-h wind oscillation with zonal wavenumber. Annales Geophysicae, 1998, 16, 828.	0.6	7
211	Experiments with a lunar atmospheric tidal model. Journal of Geophysical Research, 1997, 102, 13465-13471.	3.3	79
212	A 6.5-day westward propagating planetary wave: Origin and characteristics. Journal of Geophysical Research, 1997, 102, 26173-26178.	3.3	95
213	Unusual characteristics of lower thermosphere prevailing winds at South Pole. Geophysical Research Letters, 1997, 24, 81-84.	1.5	15
214	Quasi 2-day oscillation of the ionosphere during summer 1992. Journal of Geophysical Research, 1997, 102, 7301-7305.	3.3	46
215	Longitude structure of the ionosphereFregion from TOPEX/Poseidon and ground-based data during January 20-30, 1993, including the quasi 2-day oscillation. Journal of Geophysical Research, 1997, 102, 7293-7299.	3.3	8
216	Evidence for nonlinear coupling of planetary waves and tides in the Antarctic mesopause. Journal of Geophysical Research, 1997, 102, 4437-4446.	3.3	61

#	Article	IF	Citations
217	Zonal mean and tidal dynamics from space: an empirical examination of aliasing and sampling. Annales Geophysicae, 1997, 15, 1158-1164.	0.6	38
218	Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere. Annales Geophysicae, 1997, 15, 1165-1175.	0.6	73
219	Diurnal tidal variability in the upper mesosphere and lower thermosphere. Annales Geophysicae, 1997, 15, 1176-1186.	0.6	57
220	Quasi 2-day oscillation of the ionosphere: A statistical study. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59, 1025-1034.	0.6	63
221	Natural oscillations of the ionosphere-thermosphere-mesosphere (ITM) system. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59, 2185-2202.	0.6	30
222	Magnetic storm response of lower thermosphere density. Journal of Geophysical Research, 1996, 101, 2313-2319.	3.3	51
223	Simultaneous mesospheric wind measurements near South Pole by optical and meteor radar methods. Geophysical Research Letters, 1996, 23, 1079-1082.	1.5	25
224	Simulation of tides with a spectral mesosphere/lower thermosphere model. Geophysical Research Letters, 1996, 23, 2173-2176.	1.5	32
225	N ₂ and M ₂ lunar tides: atmospheric resonance revisited. Annales Geophysicae, 1996, 14, 826-836.	0.6	5
226	Planetary Waves in the Thermosphere-Ionosphere System Journal of Geomagnetism and Geoelectricity, 1996, 48, 91-98.	0.8	66
227	Momentum and heat sources of the mesosphere and lower thermosphere regions 70–110 km. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 967-977.	0.9	11
228	Equatorial penetration of magnetic disturbance effects in the thermosphere and ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 1085-1093.	0.9	18
229	Diurnal tide in the Antarctic and Arctic mesosphere/lower thermosphere regions. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 383-393.	0.9	22
230	Quasi 16-day oscillation in the mesosphere and lower thermosphere. Journal of Geophysical Research, 1995, 100, 9149.	3.3	153
231	On modeling migrating solar tides. Geophysical Research Letters, 1995, 22, 893-896.	1.5	287
232	First results from the meteor radar at South Pole: A large 12-hour oscillation with zonal wavenumber one. Geophysical Research Letters, 1995, 22, 3247-3250.	1.5	124
233	Wave structures in lower thermosphere density from satellite electrostatic triaxial accelerometer measurements. Journal of Geophysical Research, 1995, 100, 14693.	3.3	27
234	Semidiurnal tide in the 80–150 km region: an assimilative data analysis. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1237-1249.	0.9	33

#	Article	IF	CITATIONS
235	Radar observations of the semidiurnal tide in the mesosphere and lower thermosphere at midlatitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1251-1261.	0.9	11
236	Semidiurnal tides deduced from Saint-Santin observations during the LTCS-1 campaign. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1339-1346.	0.9	1
237	Interactions between diurnal tides and gravity waves in the lower thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1365-1373.	0.9	11
238	Monthly simulations of the lunar semi-diurnal tide. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1591-1607.	0.9	55
239	Planetary wave and solar emission signatures in the equatorial electrojet. Journal of Geophysical Research, 1994, 99, 355.	3.3	65
240	Dynamics of the Antarctic and Arctic mesosphere and lower thermosphere regions—I. The prevailing wind. Journal of Atmospheric and Solar-Terrestrial Physics, 1993, 55, 827-841.	0.9	45
241	Dynamics of the Antarctic and Arctic mesosphere and lower thermosphere regions—II. The semidiurnal tide. Journal of Atmospheric and Solar-Terrestrial Physics, 1993, 55, 843-855.	0.9	46
242	Acceleration, heating, and compositional mixing of the thermosphere due to upward propagating tides. Journal of Geophysical Research, 1993, 98, 311-321.	3.3	106
243	Magnetic activity dependence of highâ€latitude thermospheric winds and densities below 200 km. Journal of Geophysical Research, 1993, 98, 13693-13702.	3.3	22
244	Numerical investigation of the propagation of the quasiâ€ŧwoâ€day wave into the lower thermosphere. Journal of Geophysical Research, 1993, 98, 23193-23205.	3.3	139
245	Interactive ionosphere modeling: A comparison between TIGCM and ionosonde data. Journal of Geophysical Research, 1992, 97, 8591-8600.	3.3	23
246	Quasi 16â€day oscillation in the ionosphere. Geophysical Research Letters, 1992, 19, 981-984.	1.5	146
247	FAIM model (1989). Planetary and Space Science, 1992, 40, 546.	0.9	O
248	Coupling parameterizations in magnetosphere-ionosphere-thermosphere modeling. Advances in Space Research, 1992, 12, 293-301.	1.2	0
249	Tide/gravity-wave/mean-flow interactions in the mesosphere and lower thermosphere. Advances in Space Research, 1992, 12, 7-16.	1.2	7
250	Variability in the upward propagating semidiurnal tide due to effects of QBO in the lower atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1992, 54, 1465-1474.	0.9	37
251	Dynamics of the antarctic and arctic mesosphere/lower thermosphere regions. Advances in Space Research, 1992, 12, 89-96.	1.2	21
252	Mesosphere―thermosphere tidal coupling during the September 21–25, 1987, LTCS 1 Campaign. Journal of Geophysical Research, 1991, 96, 1135-1145.	3.3	21

#	Article	IF	Citations
253	Mean zonal acceleration and heating of the 70â€to 100â€km region. Journal of Geophysical Research, 1991, 96, 1225-1238.	3.3	48
254	Some transient aspects of tidal propagation. Journal of Geophysical Research, 1991, 96, 1215-1224.	3.3	41
255	Semidiurnal tidal climatology of the E region. Journal of Geophysical Research, 1991, 96, 1147-1157.	3.3	31
256	Foreword and Dedication [to Special Section on Lower Thermosphere Coupling Study (LTCS)]. Journal of Geophysical Research, 1991, 96, 1069-1069.	3.3	2
257	Middle Atmosphere Tides and Coupling between Atmospheric Regions. Journal of Geomagnetism and Geoelectricity, 1991, 43, 597-609.	0.8	10
258	Interactions between Gravity Waves and the Diurnal Tide in the Mesosphere and Lower Thermosphere. Journal of the Meteorological Society of Japan, 1991, 69, 523-531.	0.7	113
259	On the interactions between gravity waves and the diurnal propagating tide. Planetary and Space Science, 1991, 39, 1249-1257.	0.9	66
260	A numerical investigation of thermosphere-ionosphere interaction over Millstone Hill. Planetary and Space Science, 1990, 38, 1541-1549.	0.9	3
261	The lower thermosphere coupling study of the cedar and wits programs. Advances in Space Research, 1990, 10, 251-259.	1.2	18
262	Atmospheric tides below 80 km. Advances in Space Research, 1990, 10, 119-125.	1.2	5
263	Atmospheric tides between 80 km and 120 km. Advances in Space Research, 1990, 10, 127-140.	1.2	13
264	Thermospheric dynamics: A system theory approach. Radio Science, 1990, 25, 299-308.	0.8	1
265	Thermosphereâ€ionosphere coupling: An experiment in interactive modeling. Journal of Geophysical Research, 1990, 95, 201-208.	3.3	24
266	Monthly simulations of the solar semidiurnal tide in the mesosphere and lower thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1989, 51, 649-661.	0.9	174
267	Recent progress in tidal modelling. Journal of Atmospheric and Solar-Terrestrial Physics, 1989, 51, 663-671.	0.9	65
268	Effects of mean winds and dissipation on the diurnal propagating tide: An analytic approach. Planetary and Space Science, 1989, 37, 197-209.	0.9	75
269	Magnetosphereâ€thermosphere coupling: An experiment in interactive modeling. Journal of Geophysical Research, 1989, 94, 2631-2644.	3.3	35
270	"Evidence for the equatorward penetration of electric fields, winds, and compositional effects in the Asian/Pacific sector during the September 17–24, 1984, ETS interval"". Journal of Geophysical Research, 1989, 94, 16999-17007.	3.3	39

#	Article	IF	CITATIONS
271	A fully analytic, low†and middleâ€latitude ionospheric model. Journal of Geophysical Research, 1989, 94, 1520-1524.	3.3	84
272	LTCS: The Lower Thermosphere Coupling Study of the CEDAR and WITS Programs, an attempt to better understand the "Ignorosphereâ€, Eos, 1989, 70, 905.	0.1	2
273	Diurnal propagating tide in the presence of mean winds and dissipation : a numerical investigation. Planetary and Space Science, 1988, 36, 579-590.	0.9	125
274	On the utilization of ionosonde data to analyze the latitudinal penetration of ionospheric storm effects. Geophysical Research Letters, 1988, 15, 249-252.	1.5	28
275	Correction to "On the utilization of ionosonde data to analyze the latitudinal penetration of ionospheric storm effects― Geophysical Research Letters, 1988, 15, 542-542.	1.5	1
276	Thermospheric dynamics during the March 22, 1979, magnetic storm: 1. Model simulations. Journal of Geophysical Research, 1987, 92, 6045-6068.	3.3	99
277	Thermospheric dynamics during the March 22, 1979, magnetic storm: 2. Comparisons of model predictions with observations. Journal of Geophysical Research, 1987, 92, 6069-6081.	3.3	52
278	Modelling the Propagation of Atmospheric Tides from the Lower to the Middle and Upper Atmosphere. Physica Scripta, 1987, T18, 240-248.	1.2	17
279	On the specification of TGCM tidal lower boundary conditions from radar wind measurements during the June 1984 GTMS period. Advances in Space Research, 1987, 7, 295-298.	1.2	4
280	Atmospheric structure between 80 and 120 km. Advances in Space Research, 1987, 7, 135-141.	1.2	7
281	Thermospheric tides during thermosphere mapping study periods. Advances in Space Research, 1987, 7, 277-283.	1.2	5
282	Diurnal propagating tides in the low-latitude middle atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1987, 49, 153-164.	0.9	46
283	The dynamic ionosphere over Arecibo: A theoretical investigation. Journal of Geophysical Research, 1986, 91, 249-258.	3.3	49
284	Mean zonal and meridional accelerations and mean heating induced by solar tides for equinox and solstice conditions. Planetary and Space Science, 1985, 33, 283-293.	0.9	26
285	MST radar detection of middle atmosphere tides. Radio Science, 1985, 20, 1435-1440.	0.8	8
286	Thermospheric winds from the satellite electrostatic triaxial accelerometer system. Journal of Geophysical Research, 1985, 90, 6543-6552.	3.3	57
287	Middle-atmosphere tides: Recent advances in theory and observation. Advances in Space Research, 1984, 4, 87-96.	1.2	4
288	Equinox tidal heating of the upper atmosphere. Planetary and Space Science, 1984, 32, 447-456.	0.9	33

#	Article	IF	Citations
289	Middle atmosphere tides. Journal of Atmospheric and Solar-Terrestrial Physics, 1984, 46, 1049-1067.	0.9	86
290	Neutral temperatures from Thomson scatter measurements: Comparisons with the CIRA(1972). Advances in Space Research, 1983, 3, 125-128.	1.2	2
291	On the extraction of tidal information from measurements covering a fraction of a day. Geophysical Research Letters, 1983, 10, 580-582.	1.5	35
292	Physics of the Mesopause Region. Astrophysics and Space Science Library, 1983, , 733-752.	1.0	1
293	Atmospheric tides: 1. Model description and results for the solar diurnal component. Journal of Geophysical Research, 1982, 87, 5222-5240.	3.3	394
294	Atmospheric tide: 2. The solar and lunar semidiurnal components. Journal of Geophysical Research, 1982, 87, 5241-5252.	3.3	295
295	Thermospheric extensions of the classical expansion functions for semidiurnal tides. Journal of Geophysical Research, 1982, 87, 5253-5259.	3.3	60
296	Theory and observation of a dynamically evolving negative ion plasma. Journal of Geophysical Research, 1982, 87, 8273-8285.	3.3	33
297	Temperature and solar zenith angle control of D-region positive ion chemistry. Planetary and Space Science, 1982, 30, 1065-1072.	0.9	4
298	Upper atmosphere modifications due to chronic discharges of water vapour from space launch vehicle exhausts. Advances in Space Research, 1982, 2, 85-90.	1.2	0
299	Tidal effects on <i>D</i> and <i>E</i> region ion chemistries. Journal of Geophysical Research, 1981, 86, 1551-1563.	3.3	22
300	The equatorial electrojet. Reviews of Geophysics, 1981, 19, 469-504.	9.0	327
301	A model of solar flux attenuation during eclipse passage and its effects on photoelectron emission from satellite surfaces. Planetary and Space Science, 1981, 29, 601-607.	0.9	1
302	Atmospheric Motions. Science, 1981, 213, 535-536.	6.0	0
303	Mesospheric and Thermospheric Tides. Journal of the Meteorological Society of Japan, 1980, 58, 298-301.	0.7	1
304	Tidal dynamics and composition variations in the thermosphere. Journal of Geophysical Research, 1980, 85, 3401-3406.	3.3	8
305	Solar tidal wind structures and the E-region dynamo Journal of Geomagnetism and Geoelectricity, 1979, 31, 173-182.	0.8	16
306	Time evolution of ion contaminant clouds at geosynchronous orbit. Geophysical Research Letters, 1979, 6, 941-944.	1.5	3

#	Article	IF	CITATIONS
307	Tidal variations in total mass density as derived from the AEâ€E Mesa Experiment. Journal of Geophysical Research, 1979, 84, 31-35.	3.3	10
308	Tides in the joint presence of friction and rotation: An $\langle i \rangle f \langle i \rangle$ plane approximation. Journal of Geophysical Research, 1979, 84, 803-810.	3.3	29
309	The solar cycle variability of diurnal and semidiurnal thermospheric temperatures. Journal of Geophysical Research, 1979, 84, 1947-1949.	3.3	12
310	Theoretical studies of atmospheric tides. Reviews of Geophysics, 1979, 17, 1951-1981.	9.0	222
311	Thermal excitation of atmospheric tides due to insolation absorption by O ₃ and H ₂ O. Geophysical Research Letters, 1978, 5, 1013-1016.	1.5	93
312	Artificially created holes in the ionosphere. Journal of Geophysical Research, 1978, 83, 151-163.	3.3	73
313	Tidal variations in thermospheric O, O ₂ , N ₂ , Ar, He, and H. Journal of Geophysical Research, 1978, 83, 3691-3698.	3.3	19
314	Tidal structure of the thermosphere at equinox. Journal of Atmospheric and Solar-Terrestrial Physics, 1978, 40, 657-668.	0.9	37
315	Seasonal-Latitudinal Structure of the Diurnal Thermospheric Tide. Journals of the Atmospheric Sciences, 1978, 35, 148-159.	0.6	46
316	Boundary Layers Associated with Thermally Forced Planetary Waves. Journals of the Atmospheric Sciences, 1978, 35, 1441-1449.	0.6	7
317	Atmospheric solar tides and their electrodynamic effectsâ€"III. The polarization electric field. Journal of Atmospheric and Solar-Terrestrial Physics, 1977, 39, 1369-1377.	0.9	37
318	Density variations in the lower thermosphere from analysis of the AE-C accelerometer measurements. Planetary and Space Science, 1977, 25, 499-507.	0.9	14
319	Atmospheric solar tides and their electrodynamic effects—I. The global Sq current system. Journal of Atmospheric and Solar-Terrestrial Physics, 1976, 38, 897-910.	0.9	86
320	Atmospheric solar tides and their electrodynamic effects—II. The equatorial electrojet. Journal of Atmospheric and Solar-Terrestrial Physics, 1976, 38, 911-920.	0.9	109
321	Diffusion aspects of ionospheric modification by the release of highly reactive molecules into the F-region. Journal of Atmospheric and Solar-Terrestrial Physics, 1976, 38, 1299-1307.	0.9	15
322	Solar Diurnal Tide in the Thermosphere. Journals of the Atmospheric Sciences, 1976, 33, 2226-2241.	0.6	71
323	Variations in the atmospheric neutral density at 145km. Planetary and Space Science, 1975, 23, 1399-1404.	0.9	3
324	Wind estimates near 150 km from the variation in inclination of low-perigee satellite orbits. Planetary and Space Science, 1975, 23, 726-731.	0.9	8

#	Article	IF	CITATIONS
325	Thermospheric density variations associated with auroral electrojet activity. Journal of Geophysical Research, 1973, 78, 3841-3847.	3.3	24
326	Lunar semidiurnal variation in O I (5577 A) nightglow. Journal of Geophysical Research, 1972, 77, 2942-2947.	3.3	13
327	Yield of O(1D) by dissociative recombination of O2+ from night airglow observations. Journal of Atmospheric and Solar-Terrestrial Physics, 1970, 32, 1901-1908.	0.9	10
328	Neutral Composition and Density Effects in the October-November 2003 Magnetic Storms. Geophysical Monograph Series, 0, , 259-269.	0.1	1
329	Analysis of Wave Signatures in the Equatorial Ionosphere. Geophysical Monograph Series, 0, , 111-119.	0.1	5
330	Tidal and Planetary Waves. Geophysical Monograph Series, 0, , 67-87.	0.1	206