
Heiner SchĤfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initiation of Pancreatic Cancer: The Interplay of Hyperglycemia and Macrophages Promotes the Acquisition of Malignancy-Associated Properties in Pancreatic Ductal Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 5086.	4.1	8

Programmed Death-Ligand 1 (PD-L1) Expression Is Induced by Insulin in Pancreatic Ductal Adenocarcinoma Cells Pointing to Its Role in Immune Checkpoint Control. Medical Sciences (Basel,) Tj ETQq0 0 0 rgBJ /Overlook 10 Tf 5

3	TRAIL-receptor 2—a novel negative regulator of p53. Cell Death and Disease, 2021, 12, 757.	6.3	10
4	Insulin Receptor in Pancreatic Cancerâ€"Crown Witness in Cross Examination. Cancers, 2021, 13, 4988.	3.7	4
5	Inflammation Associated Pancreatic Tumorigenesis: Upregulation of Succinate Dehydrogenase (Subunit B) Reduces Cell Growth of Pancreatic Ductal Epithelial Cells. Cancers, 2020, 12, 42.	3.7	5
6	Impact of the Monocarboxylate Transporter-1 (MCT1)-Mediated Cellular Import of Lactate on Stemness Properties of Human Pancreatic Adenocarcinoma Cells. Cancers, 2020, 12, 581.	3.7	22
7	NF-κB Dependent Chemokine Signaling in Pancreatic Cancer. Cancers, 2019, 11, 1445.	3.7	26
8	Metastasis of pancreatic cancer: An uninflamed liver micromilieu controls cell growth and cancer stem cell properties by oxidative phosphorylation in pancreatic ductal epithelial cells. Cancer Letters, 2019, 453, 95-106.	7.2	26
9	The antioxidant transcription factor Nrf2 modulates the stress response and phenotype of malignant as well as premalignant pancreatic ductal epithelial cells by inducing expression of the ATF3 splicing variant ΔZip2. Oncogene, 2019, 38, 1461-1476.	5.9	7
10	The hepatic microenvironment essentially determines tumor cell dormancy and metastatic outgrowth of pancreatic ductal adenocarcinoma. Oncolmmunology, 2018, 7, e1368603.	4.6	33
11	Diabetes as risk factor for pancreatic cancer: Hyperglycemia promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Letters, 2018, 415, 129-150.	7.2	80
12	TRAIL/NF-κB/CX3CL1 Mediated Onco-Immuno Crosstalk Leading to TRAIL Resistance of Pancreatic Cancer Cell Lines. International Journal of Molecular Sciences, 2018, 19, 1661.	4.1	19
13	Role of CCL20 mediated immune cell recruitment in NF-κB mediated TRAIL resistance of pancreatic cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 782-796.	4.1	32
14	Colonic Lamina Propria Inflammatory Cells from Patients with IBD Induce the Nuclear Factor-E2 Related Factor-2 Thereby Leading to Greater Proteasome Activity and Apoptosis Protection in Human Colonocytes. Inflammatory Bowel Diseases, 2016, 22, 2593-2606.	1.9	21
15	The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1. BMC Cancer, 2016, 16, 155.	2.6	17
16	The Crosstalk between Nrf2 and TGF-β1 in the Epithelial-Mesenchymal Transition of Pancreatic Duct Epithelial Cells. PLoS ONE, 2015, 10, e0132978.	2.5	48
17	CD4 ⁺ T cells potently induce epithelial-mesenchymal-transition in premalignant and malignant pancreatic ductal epithelial cells–novel implications of CD4 ⁺ T cells in pancreatic cancer development. OncoImmunology, 2015, 4, e1000083.	4.6	39
18	Comparative Characterization of Stroma Cells and Ductal Epithelium in Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma. PLoS ONE, 2014, 9, e94357.	2.5	70

Heiner SchÄpper

#	Article	IF	CITATIONS
19	Cytoprotection "gone astray'': Nrf2 and its role in cancer. OncoTargets and Therapy, 2014, 7, 1497.	2.0	57
20	Tumorâ€associated macrophages exhibit pro―and antiâ€inflammatory properties by which they impact on pancreatic tumorigenesis. International Journal of Cancer, 2014, 135, 843-861.	5.1	216
21	Modulation of Nuclear Factor E2-related Factor-2 (Nrf2) Activation by the Stress Response Gene Immediate Early Response-3 (IER3) in Colonic Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 1917-1929.	3.4	42
22	Targeting apoptosis pathways in pancreatic cancer. Cancer Letters, 2013, 332, 346-358.	7.2	116
23	Characterisation of FAP-1 expression and CD95 mediated apoptosis in the A818-6 pancreatic adenocarcinoma differentiation system. Differentiation, 2012, 83, 148-157.	1.9	13
24	Inflammatory Macrophages Induce Nrf2 Transcription Factor-dependent Proteasome Activity in Colonic NCM460 Cells and Thereby Confer Anti-apoptotic Protection. Journal of Biological Chemistry, 2011, 286, 40911-40921.	3.4	39
25	Up-regulation of L1CAM in Pancreatic Duct Cells Is Transforming Growth Factor β1– and Slug-Dependent: Role in Malignant Transformation of Pancreatic Cancer. Cancer Research, 2009, 69, 4517-4526.	0.9	90
26	Role of myofibroblasts in innate chemoresistance of pancreatic carcinoma—Epigenetic downregulation of caspases. International Journal of Cancer, 2008, 123, 1751-1760.	5.1	64
27	Increased Expression of the E3-Ubiquitin Ligase Receptor Subunit βTRCP1 Relates to Constitutive Nuclear Factor-κB Activation and Chemoresistance in Pancreatic Carcinoma Cells. Cancer Research, 2005, 65, 1316-1324.	0.9	112
28	Usage of the NFâ€₽̂B inhibitor sulfasalazine as sensitizing agent in combined chemotherapy of pancreatic cancer. International Journal of Cancer, 2003, 104, 469-476.	5.1	83
29	Role of NF-κB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene, 2003, 22, 3243-3251.	5.9	467
30	Functional disruption of IEX-1 expression by concatemeric hammerhead ribozymes alters growth properties of 293 cells. FEBS Letters, 2001, 494, 196-200.	2.8	36
31	Expression of the NF-κB target gene IEX-1 (p22/PRG1) does not prevent cell death but instead triggers apoptosis in Hela cells. Oncogene, 2001, 20, 69-76.	5.9	86
32	Inhibition of NF-κB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene, 2001, 20, 859-868.	5.9	228
33	CD95 and TRAIL receptor-mediated activation of protein kinase C and NF-κB contributes to apoptosis resistance in ductal pancreatic adenocarcinoma cells. Oncogene, 2001, 20, 4258-4269.	5.9	154
34	p22/PRG1: A Novel Early Response Gene in Pancreatic Cancer Cells Regulated by p53 and NFkappaB. Annals of the New York Academy of Sciences, 1999, 880, 147-156.	3.8	3
35	The proliferation-associated early response gene p22/PRG1 is a novel p53 target gene. Oncogene, 1998, 16, 2479-2487.	5.9	39
36	p22/PACAP Response Gene 1 (PRG1): A Putative Target Gene for the Tumor Suppressor p53. Annals of the New York Academy of Sciences, 1998, 865, 27-36.	3.8	3

#	Article	IF	CITATIONS
37	The promoter of human p22/PACAP response gene 1 (PRG1) contains functional binding sites for the p53 tumor suppressor and for NFI®B. FEBS Letters, 1998, 436, 139-143.	2.8	63
38	Pituitary Adenylate-Cyclase-Activating Polypeptide Stimulates Proto-oncogene Expression and Activates the AP-1 (c-Fos/c-Jun) Transcription Factor in AR4-2J Pancreatic Carcinoma Cells. FEBS Journal, 1996, 242, 467-476.	0.2	23
39	Characterization and purification of the solubilized pituitary adenylate-cyclase-activating polypeptide-1 receptor from porcine brain using a biotinylated ligand. FEBS Journal, 1993, 217, 823-830.	0.2	16