
## **Christian M Julien**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9267795/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lattice vibrations of manganese oxides. Spectrochimica Acta - Part A: Molecular and Biomolecular<br>Spectroscopy, 2004, 60, 689-700.                                                                            | 3.9  | 802       |
| 2  | Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics, 2014, 2, 132-154.                                                                                                                     | 2.7  | 373       |
| 3  | Minimization of the cation mixing in Li1+x(NMC)1â^xO2 as cathode material. Journal of Power Sources, 2010, 195, 1292-1301.                                                                                      | 7.8  | 337       |
| 4  | Safe and fast-charging Li-ion battery with long shelf life for power applications. Journal of Power Sources, 2011, 196, 3949-3954.                                                                              | 7.8  | 298       |
| 5  | Challenges and issues facing lithium metal for solid-state rechargeable batteries. Journal of Power Sources, 2017, 353, 333-342.                                                                                | 7.8  | 273       |
| 6  | Brief History of Early Lithium-Battery Development. Materials, 2020, 13, 1884.                                                                                                                                  | 2.9  | 253       |
| 7  | Study of the Li-insertion/extraction process in LiFePO4/FePO4. Journal of Power Sources, 2009, 187, 555-564.                                                                                                    | 7.8  | 229       |
| 8  | Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 97, 217-230. | 3.5  | 209       |
| 9  | Nanostructured MnO2 as Electrode Materials for Energy Storage. Nanomaterials, 2017, 7, 396.                                                                                                                     | 4.1  | 195       |
| 10 | Characterization of Na-based phosphate as electrode materials for electrochemical cells. Journal of<br>Power Sources, 2011, 196, 9612-9617.                                                                     | 7.8  | 193       |
| 11 | Lithium intercalated compounds. Materials Science and Engineering Reports, 2003, 40, 47-102.                                                                                                                    | 31.8 | 188       |
| 12 | Cross-linking network based on Poly(ethylene oxide): Solid polymer electrolyte for room temperature<br>lithium battery. Journal of Power Sources, 2019, 420, 63-72.                                             | 7.8  | 186       |
| 13 | Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review.<br>Nanomaterials, 2020, 10, 1606.                                                                                    | 4.1  | 179       |
| 14 | Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends. Journal of Power Sources, 2013, 232, 357-369.                                                           | 7.8  | 173       |
| 15 | Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 100, 69-78.      | 3.5  | 171       |
| 16 | Building Better Batteries in the Solid State: A Review. Materials, 2019, 12, 3892.                                                                                                                              | 2.9  | 168       |
| 17 | Structural, magnetic and electrochemical properties of lithium iron orthosilicate. Journal of Power<br>Sources, 2006, 160, 1381-1386.                                                                           | 7.8  | 157       |
| 18 | A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives. Materials Science and Engineering Reports, 2018, 134, 1-21.                                           | 31.8 | 136       |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures.<br>Journal of Power Sources, 2005, 140, 370-375.                                                         | 7.8  | 134       |
| 20 | Structure and electrochemistry of FePO4·2H2O hydrate. Journal of Power Sources, 2005, 142, 279-284.                                                                                                          | 7.8  | 130       |
| 21 | Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by wet-chemical method. Electrochimica Acta, 2010, 55, 6440-6449.                                                                                      | 5.2  | 126       |
| 22 | Polypyrrole-covered MnO2 as electrode material for supercapacitor. Journal of Power Sources, 2013, 240, 267-272.                                                                                             | 7.8  | 126       |
| 23 | Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery.<br>Journal of Power Sources, 2011, 196, 8632-8637.                                                        | 7.8  | 125       |
| 24 | From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte<br>Chemie - International Edition, 2020, 59, 534-538.                                                        | 13.8 | 124       |
| 25 | In operando scanning electron microscopy and ultraviolet–visible spectroscopy studies of<br>lithium/sulfur cells using all solid-state polymer electrolyte. Journal of Power Sources, 2016, 319,<br>247-254. | 7.8  | 118       |
| 26 | Advanced Electrodes for High Power Li-ion Batteries. Materials, 2013, 6, 1028-1049.                                                                                                                          | 2.9  | 115       |
| 27 | Nano-sized impurity phases in relation to the mode of preparation of LiFePO4. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 129, 232-244.                        | 3.5  | 114       |
| 28 | Lithium Batteries. , 2016, , .                                                                                                                                                                               |      | 114       |
| 29 | Aging of LiFePO4 upon exposure to H2O. Journal of Power Sources, 2008, 185, 698-710.                                                                                                                         | 7.8  | 110       |
| 30 | Optimized electrochemical performance of LiFePO4 at 60°C with purity controlled by SQUID magnetometry. Journal of Power Sources, 2006, 163, 560-566.                                                         | 7.8  | 109       |
| 31 | Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm.<br>Physical Review B, 1992, 46, 2503-2511.                                                                    | 3.2  | 108       |
| 32 | Advances in lithium—sulfur batteries. Materials Science and Engineering Reports, 2017, 121, 1-29.                                                                                                            | 31.8 | 100       |
| 33 | Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for<br>Li-ion batteries. Journal of Power Sources, 2012, 219, 36-44.                                             | 7.8  | 98        |
| 34 | Recent Progress on Organic Electrodes Materials for Rechargeable Batteries and Supercapacitors.<br>Materials, 2019, 12, 1770.                                                                                | 2.9  | 97        |
| 35 | An improved high-power battery with increased thermal operating range: C–LiFePO4//C–Li4Ti5O12.<br>Journal of Power Sources, 2012, 216, 192-200.                                                              | 7.8  | 96        |
| 36 | Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. Nano Energy, 2019, 59, 390-398.                                                          | 16.0 | 96        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 130, 41-48. | 3.5 | 91        |
| 38 | Study of the nanosized Li2MnO3: Electrochemical behavior, structure, magnetic properties, and vibrational modes. Electrochimica Acta, 2013, 97, 259-270.                                          | 5.2 | 89        |
| 39 | Optimization of Layered Cathode Materials for Lithium-Ion Batteries. Materials, 2016, 9, 595.                                                                                                     | 2.9 | 89        |
| 40 | Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics, 2018, 24, 2925-2934.                                                                                                                | 2.4 | 88        |
| 41 | Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5V cathode for lithium ion batteries. Journal of Power Sources, 2012, 204, 127-132.                                                              | 7.8 | 83        |
| 42 | Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition. Chemical Physics Letters, 2006, 428, 114-118.                       | 2.6 | 78        |
| 43 | Aging of LiNi1/3Mn1/3Co1/3O2 cathode material upon exposure to H2O. Journal of Power Sources, 2011, 196, 5102-5108.                                                                               | 7.8 | 78        |
| 44 | High Substitution Rate in TiO <sub>2</sub> Anatase Nanoparticles with Cationic Vacancies for Fast<br>Lithium Storage. Chemistry of Materials, 2015, 27, 5014-5019.                                | 6.7 | 77        |
| 45 | In situ Scanning electron microscope study and microstructural evolution of nano silicon anode for high energy Li-ion batteries. Journal of Power Sources, 2014, 248, 457-464.                    | 7.8 | 76        |
| 46 | Tribute to Michel Armand: from Rocking Chair – Li-ion to Solid-State Lithium Batteries. Journal of the<br>Electrochemical Society, 2020, 167, 070507.                                             | 2.9 | 74        |
| 47 | Structural and magnetic properties of Lix(MnyFe1â^'y)PO4 electrode materials for Li-ion batteries.<br>Journal of Power Sources, 2009, 189, 1154-1163.                                             | 7.8 | 73        |
| 48 | Structural studies of Li4/3Me5/3O4 (Me = Ti, Mn) electrode materials: local structure and electrochemical aspects. Journal of Power Sources, 2004, 136, 72-79.                                    | 7.8 | 71        |
| 49 | Improvements of the electrochemical features of graphite fluorides in primary lithium battery by electrodeposition of polypyrrole. Electrochemistry Communications, 2011, 13, 1074-1076.          | 4.7 | 71        |
| 50 | Study of Cathode Materials for Lithium-Ion Batteries: Recent Progress and New Challenges.<br>Inorganics, 2017, 5, 32.                                                                             | 2.7 | 68        |
| 51 | NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries. Energies, 2020, 13, 6363.                                                                                                          | 3.1 | 68        |
| 52 | Synthesis of pure phase disordered LiMn1.45Cr0.1Ni0.45O4 by a post-annealing method. Journal of Power Sources, 2012, 217, 400-406.                                                                | 7.8 | 67        |
| 53 | Electrochemical properties of nanofibers α-MoO3 as cathode materials for Li batteries. Journal of<br>Power Sources, 2012, 219, 126-132.                                                           | 7.8 | 65        |
| 54 | On the growth mechanism of pulsed-laser deposited vanadium oxide thin films. Materials Science and<br>Engineering B: Solid-State Materials for Advanced Technology, 2004, 111, 218-225.           | 3.5 | 64        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | <em>In situ</em> Raman analyses of electrode materials for Li-ion batteries. AIMS Materials<br>Science, 2018, 5, 650-698.                                                                                     | 1.4 | 64        |
| 56 | Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods. Journal of Magnetism and Magnetic Materials, 2007, 309, 100-105.                                                              | 2.3 | 63        |
| 57 | Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for<br>Li-batteries by Sn-doping. Journal of Alloys and Compounds, 2011, 509, 9669-9674.                          | 5.5 | 63        |
| 58 | Electrochemistry and local structure of nano-sized Li4/3Me5/3O4 (MeMn, Ti) spinels. Electrochimica<br>Acta, 2004, 50, 411-416.                                                                                | 5.2 | 61        |
| 59 | Local structure of lithiated manganese oxides. Solid State Ionics, 2006, 177, 11-19.                                                                                                                          | 2.7 | 59        |
| 60 | New advanced cathode material: LiMnPO4 encapsulated with LiFePO4. Journal of Power Sources, 2012, 204, 177-181.                                                                                               | 7.8 | 58        |
| 61 | Structural, magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for<br>Li-ion batteries. Electrochimica Acta, 2007, 52, 4092-4100.                                                | 5.2 | 56        |
| 62 | LiFePO4: From molten ingot to nanoparticles with high-rate performance in Li-ion batteries. Journal of<br>Power Sources, 2010, 195, 8280-8288.                                                                | 7.8 | 56        |
| 63 | Synthesis and interface stability of polystyrene-poly(ethylene glycol)-polystyrene triblock copolymer<br>as solid-state electrolyte for lithium-metal batteries. Journal of Power Sources, 2019, 428, 93-104. | 7.8 | 56        |
| 64 | Phase Transitions in Li2MnO3 Electrodes at Various States-of-Charge. Electrochimica Acta, 2014, 123, 395-404.                                                                                                 | 5.2 | 54        |
| 65 | Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2. Materials Chemistry and Physics, 2011, 130, 33-38.                                                     | 4.0 | 53        |
| 66 | In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO4. Journal of Power Sources, 2011, 196, 7383-7394.                                       | 7.8 | 52        |
| 67 | Stirring effect in hydrothermal synthesis of nano C-LiFePO4. Journal of Power Sources, 2014, 266, 99-106.                                                                                                     | 7.8 | 52        |
| 68 | Synthesis, structural, magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a sol–gel method using table sugar as chelating agent. Electrochimica Acta, 2013, 113, 313-321.             | 5.2 | 51        |
| 69 | Electrochemical and thermal characterization of lithium titanate spinel anode in<br>C–LiFePO4//C–Li4Ti5O12 cells at sub-zero temperatures. Journal of Power Sources, 2014, 248, 1050-1057.                    | 7.8 | 50        |
| 70 | Structure and electrochemistry of scaling nano C–LiFePO4 synthesized by hydrothermal route:<br>Complexing agent effect. Journal of Power Sources, 2012, 214, 1-6.                                             | 7.8 | 47        |
| 71 | Pulsed Laser Deposited Films for Microbatteries. Coatings, 2019, 9, 386.                                                                                                                                      | 2.6 | 46        |
| 72 | Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries. Journal of Power<br>Sources, 2021, 501, 229709.                                                                             | 7.8 | 46        |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Structural and electronic properties of the LiNiPO4 orthophosphate. lonics, 2012, 18, 625-633.                                                                                                                                                 | 2.4  | 44        |
| 74 | Structural properties and electrochemistry of α-LiFeO2. Journal of Power Sources, 2012, 197, 285-291.                                                                                                                                          | 7.8  | 44        |
| 75 | Sputtered LiCoO2 Cathode Materials for All-solid-state Thin-film Lithium Microbatteries. Materials, 2019, 12, 2687.                                                                                                                            | 2.9  | 43        |
| 76 | "Polymer-in-ceramic―based poly(ƕcaprolactone)/ceramic composite electrolyte for all-solid-state<br>batteries. Journal of Energy Chemistry, 2021, 52, 318-325.                                                                                  | 12.9 | 43        |
| 77 | DTA, FTIR and impedance spectroscopy studies on lithium–iron–phosphate glasses with olivine-like<br>local structure. Solid State Ionics, 2008, 179, 46-50.                                                                                     | 2.7  | 42        |
| 78 | Comparative studies of the phase evolution in M-doped LixMn1.5Ni0.5O4 (MÂ=ÂCo, Al, Cu and Mg) by<br>in-situ X-ray diffraction. Journal of Power Sources, 2014, 264, 290-298.                                                                   | 7.8  | 42        |
| 79 | Olivine Positive Electrodes for Li-Ion Batteries: Status and Perspectives. Batteries, 2018, 4, 39.                                                                                                                                             | 4.5  | 41        |
| 80 | Amorphous–crystalline transition studied in hydrated MoO3. Materials Science and Engineering B:<br>Solid-State Materials for Advanced Technology, 2006, 135, 88-94.                                                                            | 3.5  | 40        |
| 81 | Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed<br>Al current collector corrosion and the stability of Li metal/electrolytes interfaces. Journal of Power<br>Sources, 2018, 380, 115-125. | 7.8  | 40        |
| 82 | O <sub>2</sub> Adsorption Associated with Sulfur Vacancies on MoS <sub>2</sub> Microspheres.<br>Inorganic Chemistry, 2019, 58, 2169-2176.                                                                                                      | 4.0  | 40        |
| 83 | V <sub>2</sub> O <sub>5</sub> thin films for energy storage and conversion. AIMS<br>Materials Science, 2018, 5, 349-401.                                                                                                                       | 1.4  | 40        |
| 84 | Green synthesis of nanosized manganese dioxide as positive electrode for lithium-ion batteries using<br>lemon juice and citrus peel. Electrochimica Acta, 2018, 262, 74-81.                                                                    | 5.2  | 39        |
| 85 | Microstructural features of pulsed-laser deposited V2O5 thin films. Applied Surface Science, 2003, 207, 135-138.                                                                                                                               | 6.1  | 38        |
| 86 | Lattice vibrations of materials for lithium rechargeable batteries V. Local structure of Li0.3MnO2.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 100, 87-92.                                   | 3.5  | 38        |
| 87 | State-of-the-Art Electrode Materials for Sodium-Ion Batteries. Materials, 2020, 13, 3453.                                                                                                                                                      | 2.9  | 37        |
| 88 | Nanosized silver-coated and doped manganese dioxide for rechargeable lithium batteries. Solid State<br>Ionics, 2011, 182, 108-115.                                                                                                             | 2.7  | 36        |
| 89 | EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries. Journal of Alloys and Compounds, 2018, 737, 758-766.                                                                                   | 5.5  | 36        |
| 90 | LiMn2â^'yCoyO4 (0â‰9⁄ã‰⊉) intercalation compounds synthesized from wet-chemical route. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 129, 64-75.                                                | 3.5  | 35        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Study of the local structure of LiNi0.33+ÎMn0.33+ÎCo0.33â^2ÎO2 (0.025â‰Êâ‰ <b>9</b> .075) oxides. Journal of Alloys<br>and Compounds, 2012, 528, 91-98.                                          | 5.5  | 35        |
| 92  | Study of Co–Sn and Ni–Sn alloys prepared in molten chlorides and used as negative electrode in rechargeable lithium battery. Electrochimica Acta, 2011, 56, 2656-2664.                           | 5.2  | 34        |
| 93  | Enhanced Electrochemical Properties of LiFePO <sub>4</sub> as Positive<br>Electrode of Li-Ion Batteries for HEV Application. Advances in Chemical Engineering and Science, 2012,<br>02, 321-329. | 0.5  | 34        |
| 94  | Lithium reactivity with III–VI layered compounds. Materials Science and Engineering B: Solid-State<br>Materials for Advanced Technology, 2003, 100, 263-270.                                     | 3.5  | 32        |
| 95  | Lattice vibrations of materials for lithium rechargeable batteries. Materials Science and Engineering<br>B: Solid-State Materials for Advanced Technology, 2004, 108, 179-186.                   | 3.5  | 32        |
| 96  | Modulating molecular orbital energy level of lithium polysulfide for high-rate and long-life<br>lithium-sulfur batteries. Energy Storage Materials, 2020, 24, 373-378.                           | 18.0 | 32        |
| 97  | Li(Ni,Co)PO4 as cathode materials for lithium batteries: Will the dream come true?. Current Opinion in Electrochemistry, 2017, 6, 63-69.                                                         | 4.8  | 31        |
| 98  | Composite anodes for lithium-ion batteries: status and trends. AIMS Materials Science, 2016, 3, 1054-1106.                                                                                       | 1.4  | 30        |
| 99  | Disorder in LixFePO4: From glasses to nanocrystallites. Journal of Non-Crystalline Solids, 2008, 354, 1915-1925.                                                                                 | 3.1  | 29        |
| 100 | Crystallinity of nano C-LiFePO4 prepared by the polyol process. Journal of Power Sources, 2012, 217, 220-228.                                                                                    | 7.8  | 29        |
| 101 | A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries.<br>Electrochimica Acta, 2020, 353, 136529.                                                 | 5.2  | 29        |
| 102 | LiCo <sub>1â^'<i>y</i></sub> B <sub><i>y</i></sub> O <sub>2</sub> As Cathode Materials for Rechargeable<br>Lithium Batteries. Chemistry of Materials, 2011, 23, 208-218.                         | 6.7  | 28        |
| 103 | De-intercalation of LixCo0.8Mn0.2O2: A magnetic approach. Journal of Power Sources, 2011, 196, 6440-6448.                                                                                        | 7.8  | 28        |
| 104 | From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte<br>Chemie, 2020, 132, 542-546.                                                                   | 2.0  | 28        |
| 105 | In-situ Raman spectroscopic investigation of LiMn1.45Ni0.45M0.1O4 (MÂ=ÂCr, Co) 5ÂV cathode materials.<br>Journal of Power Sources, 2015, 298, 341-348.                                           | 7.8  | 27        |
| 106 | Urchin-like α-MnO2 formed by nanoneedles for high-performance lithium batteries. Ionics, 2016, 22, 2263-2271.                                                                                    | 2.4  | 27        |
| 107 | Lithium Batteries. , 2016, , 29-68.                                                                                                                                                              |      | 27        |
| 108 | SnO2–MnO2 composite powders and their electrochemical properties. Journal of Power Sources, 2012, 202, 291-298.                                                                                  | 7.8  | 26        |

| #   | Article                                                                                                                                                                                         | IF         | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 109 | Studies of Spinel-to-Layered Structural Transformations in LiMn <sub>2</sub> O <sub>4</sub><br>Electrodes Charged to High Voltages. Journal of Physical Chemistry C, 2017, 121, 9120-9130.      | 3.1        | 26        |
| 110 | Novel nanomaterials based on electronic and mixed conductive glasses. Solid State Ionics, 2009, 180, 531-536.                                                                                   | 2.7        | 24        |
| 111 | Electrodeposition of Zr on graphite in molten fluorides. Journal of Fluorine Chemistry, 2011, 132, 1122-1126.                                                                                   | 1.7        | 24        |
| 112 | Structural and electrochemical properties of LiMoO2. Journal of Power Sources, 2012, 202, 314-321.                                                                                              | 7.8        | 24        |
| 113 | In-situ X-ray diffraction study of the phase evolution in undoped and Cr-doped LixMn1.5Ni0.5O4<br>(0.1Ââ‰ÂxÂâ‰Â1.0) 5-V cathode materials. Journal of Power Sources, 2013, 242, 236-243.        | 7.8        | 24        |
| 114 | Nano-CoF 3 prepared by direct fluorination with F 2 gas: Application as electrode material in Li-ion battery. Journal of Fluorine Chemistry, 2017, 196, 117-127.                                | 1.7        | 22        |
| 115 | Electrochemical performance of nanosized MnO2 synthesized by redox route using biological reducing agents. Journal of Alloys and Compounds, 2018, 746, 227-237.                                 | 5.5        | 22        |
| 116 | Lithium-Rich Cobalt-Free Manganese-Based Layered Cathode Materials for Li-Ion Batteries: Suppressing the Voltage Fading. Energies, 2020, 13, 3487.                                              | 3.1        | 22        |
| 117 | Synthesis, structural and electrochemical properties of pulsed laser deposited Li(Ni,Co)O2 films.<br>Journal of Power Sources, 2006, 159, 1310-1315.                                            | 7.8        | 21        |
| 118 | Magnetic characterization of spinel. Journal of Physics and Chemistry of Solids, 2008, 69, 955-966.                                                                                             | 4.0        | 21        |
| 119 | Magnetic properties of LixNiyMnyCo1â^'2yO2 (0.2â‰⊉â^'2yâ‰ <b>9</b> .5, 0â‰ <b>¤</b> â‰⊉). Journal of Alloys and Compound<br>2012, 520, 42-51.                                                   | ds.<br>5.5 | 21        |
| 120 | Improved electrochemical performance of LiNi0.5Mn0.5O2 by Li-enrichment and AlF3 coating.<br>Materialia, 2019, 5, 100207.                                                                       | 2.7        | 21        |
| 121 | Li <sub>2</sub> TiO <sub>3</sub> /Graphene and Li <sub>2</sub> TiO <sub>3</sub> /CNT Composites as<br>Anodes for High Power Li–lon Batteries. ChemistrySelect, 2018, 3, 9150-9158.              | 1.5        | 20        |
| 122 | Doped Nanoscale NMC333 as Cathode Materials for Li-Ion Batteries. Materials, 2019, 12, 2899.                                                                                                    | 2.9        | 20        |
| 123 | Functional behavior of AlF <sub>3</sub> coatings for high-performance cathode materials for lithium-ion batteries. AIMS Materials Science, 2019, 6, 406-440.                                    | 1.4        | 20        |
| 124 | Synthesis, characterization and electrochemical performance of Al-substituted Li2MnO3. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 201, 13-22. | 3.5        | 19        |
| 125 | Blend formed by oxygen deficient MoO 3â~î´ oxides as lithium-insertion compounds. Journal of Alloys<br>and Compounds, 2016, 686, 744-752.                                                       | 5.5        | 19        |
| 126 | Ag-Modified LiMn2O4 Cathode for Lithium-Ion Batteries: Coating Functionalization. Energies, 2020, 13, 5194.                                                                                     | 3.1        | 19        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Local structure and electrochemistry of LiNi y Mn y Co1 â^ 2y O2 electrode materials for Li-ion batteries.<br>Ionics, 2008, 14, 89-97.                                                                                   | 2.4 | 18        |
| 128 | Self-assembled layer-by-layer partially reduced graphene oxide–sulfur composites as lithium–sulfur<br>battery cathodes. RSC Advances, 2018, 8, 3443-3452.                                                                | 3.6 | 18        |
| 129 | Pseudocapacitance controlled fast-charging and long-life lithium ion battery achieved via a 3D<br>mutually embedded VPO4/rGO electrode. Journal of Alloys and Compounds, 2020, 812, 152135.                              | 5.5 | 18        |
| 130 | Nanoscience Supporting the Research on the Negative Electrodes of Li-Ion Batteries. Nanomaterials, 2015, 5, 2279-2301.                                                                                                   | 4.1 | 17        |
| 131 | RF Sputter-Deposited Nanostructured CuO Films for Micro-Supercapacitors. Applied Nano, 2021, 2,<br>46-66.                                                                                                                | 2.0 | 17        |
| 132 | Lithiated manganese oxide Li0.33MnO2 as an electrode material for lithium batteries. Journal of Power<br>Sources, 2006, 159, 1365-1369.                                                                                  | 7.8 | 16        |
| 133 | New composite cathode material for Zn//MnO2 cells obtained by electro-deposition of polybithiophene on manganese dioxide particles. Solid State Ionics, 2011, 204-205, 53-60.                                            | 2.7 | 16        |
| 134 | Olivine-Based Blended Compounds as Positive Electrodes for Lithium Batteries. Inorganics, 2016, 4, 17.                                                                                                                   | 2.7 | 16        |
| 135 | Synthesis of highly reproducible CdTe nanotubes on anodized alumina template and confinement<br>study by photoluminescence and Raman spectroscopy. Journal of Alloys and Compounds, 2019, 809,<br>151765.                | 5.5 | 16        |
| 136 | Li2TiO3/Ni foam composite as high-performance electrode for energy storage and conversion. Heliyon, 2019, 5, e02060.                                                                                                     | 3.2 | 16        |
| 137 | Magnetic analysis of lamellar oxides for Li-ions batteries. Solid State Ionics, 2011, 188, 148-155.                                                                                                                      | 2.7 | 15        |
| 138 | Preparation and characterization of polybithiophene/ $\hat{l}^2$ -MnO2 composite electrode for oxygen reduction. Ionics, 2011, 17, 239-246.                                                                              | 2.4 | 15        |
| 139 | RF-sputtered LiCoO2 thick films: microstructure and electrochemical performance as cathodes in aqueous and nonaqueous microbatteries. Ionics, 2013, 19, 421-428.                                                         | 2.4 | 15        |
| 140 | MnO2 Nano-Rods Prepared by Redox Reaction as Cathodes in Lithium Batteries. ECS Transactions, 2013, 50, 125-130.                                                                                                         | 0.5 | 15        |
| 141 | Structural properties and application in lithium cells of Li(Ni0.5Co0.5)1â^'Fe O2 (0Ââ‰ÂyÂâ‰Â0.25) prepared by<br>sol–gel route: Doping optimization. Journal of Power Sources, 2016, 320, 168-179.                      | 7.8 | 15        |
| 142 | Transport Properties of Nanostructured Li2TiO3 Anode Material Synthesized by Hydrothermal Method. Sci, 2019, 1, 56.                                                                                                      | 3.0 | 15        |
| 143 | Growth, characterization and performance of bulk and nanoengineered molybdenum oxides for electrochemical energy storage and conversion. Progress in Crystal Growth and Characterization of Materials, 2021, 67, 100533. | 4.0 | 15        |
| 144 | Ionic conduction and crystal structure of β-Pb1â~'xSnxF2 (xâ‰ <b>6</b> .3). Solid State Ionics, 1998, 106, 291-299.                                                                                                      | 2.7 | 14        |

| #   | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 material prepared by a two-step synthesis via oxalate precursor. Ionics, 2012, 18, 1-9.                                                                                   | 2.4  | 14        |
| 146 | Surface modification of positive electrode materials for lithium-ion batteries. Thin Solid Films, 2014, 572, 200-207.                                                                                                                      | 1.8  | 14        |
| 147 | Olivine-Based Cathode Materials. Green Energy and Technology, 2015, , 25-65.                                                                                                                                                               | 0.6  | 14        |
| 148 | Influence of Ti and Zr dopants on the electrochemical performance of LiCoO2 film cathodes prepared<br>by rf-magnetron sputtering. Materials Science and Engineering B: Solid-State Materials for Advanced<br>Technology, 2016, 209, 30-36. | 3.5  | 14        |
| 149 | Amorphous Mo5O14-Type/Carbon Nanocomposite with Enhanced Electrochemical Capability for Lithium-Ion Batteries. Nanomaterials, 2020, 10, 8.                                                                                                 | 4.1  | 14        |
| 150 | Nanotechnology of Positive Electrodes for Li-Ion Batteries. Inorganics, 2017, 5, 25.                                                                                                                                                       | 2.7  | 12        |
| 151 | TiO2 thin films on Au/Ti/SiO2/textured Si substrates as high capacity anode materials for Li-ion batteries. Ceramics International, 2020, 46, 10299-10308.                                                                                 | 4.8  | 12        |
| 152 | Nanostructured Molybdenum-Oxide Anodes for Lithium-Ion Batteries: An Outstanding Increase in<br>Capacity. Nanomaterials, 2022, 12, 13.                                                                                                     | 4.1  | 12        |
| 153 | Rechargeable lithium batteries for energy storage in smart grids. , 2015, , 319-351.                                                                                                                                                       |      | 11        |
| 154 | Tribute to John B. Goodenough: From Magnetism to Rechargeable Batteries. Advanced Energy<br>Materials, 2021, 11, 2000773.                                                                                                                  | 19.5 | 11        |
| 155 | LiCo1â~yMyO2 positive electrodes for rechargeable lithium batteries. Materials Science and<br>Engineering B: Solid-State Materials for Advanced Technology, 2006, 128, 138-150.                                                            | 3.5  | 10        |
| 156 | V-insertion in Li(Fe,Mn)FePO4. Journal of Power Sources, 2018, 383, 133-143.                                                                                                                                                               | 7.8  | 9         |
| 157 | Improved ion-diffusion assisted uniform growth of 1D CdS nanostructures for enhanced optical and energy storage properties. Applied Surface Science, 2020, 512, 145654.                                                                    | 6.1  | 9         |
| 158 | Improvement of the rate property of LiMn1.45Ni0.45Cr0.1O4 cathode for Li-ion batteries.<br>Electrochemistry Communications, 2014, 41, 64-67.                                                                                               | 4.7  | 8         |
| 159 | Nanostructured Graphene Oxide-Based Hybrids as Anodes for Lithium-Ion Batteries. Journal of Carbon<br>Research, 2020, 6, 81.                                                                                                               | 2.7  | 8         |
| 160 | MoSe2-WS2 Nanostructure for an Efficient Hydrogen Generation under White Light LED Irradiation.<br>Nanomaterials, 2022, 12, 1160.                                                                                                          | 4.1  | 8         |
| 161 | Diffusion of Li <sup>+</sup> lons in<br>LiNi <sub>1/3</sub> Mn <sub>1/3</sub> Co <sub>1/3</sub> O <sub>2</sub> . ECS Transactions, 2011, 35, 89-94.                                                                                        | 0.5  | 7         |
| 162 | Effects of chelators on the structure and electrochemical properties of Li-rich<br>Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. Journal of Solid State Electrochemistry, 2020, 24,<br>3157-3172.                                           | 2.5  | 7         |

| #   | Article                                                                                                                                                                                                                                      | IF                | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 163 | Smart materials for energy storage in Li-ion batteries. AIMS Materials Science, 2016, 3, 137-148.                                                                                                                                            | 1.4               | 7         |
| 164 | Electro-synthesis, characterization and photoconducting performance of ITO/polybithiophene–MnO2<br>composite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016,<br>208, 29-38.                       | 3.5               | 6         |
| 165 | Molybdenum-Suboxide Thin Films as Anode Layers in Planar Lithium Microbatteries. Electrochem, 2020,<br>1, 160-187.                                                                                                                           | 3.3               | 6         |
| 166 | Sonochemically synthesized nanostructured ternary electrode material for coin-cell-type supercapacitor applications. FlatChem, 2021, 30, 100304.                                                                                             | 5.6               | 6         |
| 167 | Synthesis, characterization and electrochemical properties of a novel triphosphate LiFe2P3O10.<br>Electrochimica Acta, 2009, 54, 5500-5508.                                                                                                  | 5.2               | 5         |
| 168 | Synthesis of High Surface Area Î $\pm$ -KyMnO2 Nanoneedles Using Extract of Broccoli as Bioactive Reducing Agent and Application in Lithium Battery. Materials, 2020, 13, 1269.                                                              | 2.9               | 5         |
| 169 | Enhanced Electrochemical Performance of Li4Ti5O12 by Niobium Doping for Pseudocapacitive Applications. Micro, 2021, 1, 28-42.                                                                                                                | 2.0               | 5         |
| 170 | Effect of Cationic (Na+) and Anionic (Fâ^') Co-Doping on the Structural and Electrochemical Properties<br>of LiNi1/3Mn1/3Co1/3O2 Cathode Material for Lithium-Ion Batteries. International Journal of Molecular<br>Sciences, 2022, 23, 6755. | 4.1               | 5         |
| 171 | Structure of LiFe2P3O10 studied by transmission electron microscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 78-81.                                                                   | 3.5               | 4         |
| 172 | Effect of Na Doping on the Electrochemical Performance of Li1.2Ni0.13Co0.13Mn0.54O2 Cathode for Lithium-Ion Batteries. Sustainable Chemistry, 2022, 3, 131-148.                                                                              | 4.7               | 4         |
| 173 | Remedies to Avoid Failure Mechanisms of Lithium-Metal Anode in Li-Ion Batteries. Inorganics, 2022, 10,<br>5.                                                                                                                                 | 2.7               | 4         |
| 174 | Magnetic properties of LiNi0.5Mn0.47Al0.03O2 as positive electrode for Li-ion batteries. Ionics, 2012, 18, 241-247.                                                                                                                          | 2.4               | 3         |
| 175 | Fluorosulfates and Fluorophosphates As New Cathode Materials for Lithium Ion Battery. , 2015, , 77-101.                                                                                                                                      |                   | 3         |
| 176 | Interface Kinetics Assisted Barrier Removal in Large Area 2D-WS2 Growth to Facilitate Mass Scale<br>Device Production. Nanomaterials, 2021, 11, 220.                                                                                         | 4.1               | 3         |
| 177 | Relaxation of polaronic charge carriers in lithium manganese spinels. Journal of Non-Crystalline<br>Solids, 2007, 353, 4384-4389.                                                                                                            | 3.1               | 2         |
| 178 | LiNi0.33+δMn0.33+δCo0.33-2δO2 (0.025 â‰ቑ̂´ ≤0.075) Cathode Materials for Li-Ion Batteries: Electrochemica<br>Features. ECS Transactions, 2011, 35, 135-139.                                                                                  | <sup>II</sup> 0.5 | 2         |
| 179 | Structural and Electrochemical Properties of the High Ni Content Spinel LiNiMnO4. Electrochem, 2021, 2, 95-117.                                                                                                                              | 3.3               | 2         |
| 180 | LiNi0.33+δMn0.33+δCo0.33-2δO2 (0.025 â‰ቑ゚´â‰¤0.075) Cathode Materials for Li-Ion Batteries: Local Structure<br>ECS Transactions, 2011, 35, 129-134.                                                                                          | <br>0.5           | 1         |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Electrodeposition of Polypyrrole on CFx Powders Used as Cathode in Primary Lithium Battery. , 2015, , 237-260.                                                                 |     | 1         |
| 182 | Anodes for Li-Ion Batteries. , 2016, , 323-429.                                                                                                                                |     | 1         |
| 183 | Fluoro-polyanionic Compounds. , 2016, , 269-293.                                                                                                                               |     | 1         |
| 184 | Basic Elements for Energy Storage and Conversion. , 2016, , 1-27.                                                                                                              |     | 1         |
| 185 | Dynamic synthesis of CdTe NRs: Diameter dependent tuning of PL quenching efficiency for sensitive organic vapor detection. Journal of Alloys and Compounds, 2022, 901, 163663. | 5.5 | 1         |