Norbert Sauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9267733/publications.pdf

Version: 2024-02-01

172457 377865 4,293 33 29 34 citations h-index g-index papers 34 34 34 4002 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cell-to-Cell and Long-Distance Trafficking of the Green Fluorescent Protein in the Phloem and Symplastic Unloading of the Protein into Sink Tissues. Plant Cell, 1999, 11, 309-322.	6.6	529
2	The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of ?-glucuronidase to the phloem: Evidence for phloem loading and unloading by SUC2. Planta, 1995, 196, 564-70.	3.2	353
3	Molecular physiology of higher plant sucrose transporters. FEBS Letters, 2007, 581, 2309-2317.	2.8	347
4	SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker's yeast and identification of the histidine-tagged protein. Plant Journal, 1994, 6, 67-77.	5.7	344
5	Cell-to-Cell Movement of Green Fluorescent Protein Reveals Post-Phloem Transport in the Outer Integument and Identifies Symplastic Domains in Arabidopsis Seeds and Embryos. Plant Physiology, 2005, 139, 701-712.	4.8	255
6	The Monosaccharide Transporter Gene, AtSTP4, and the Cell-Wall Invertase, $At\hat{l}^2$ fruct1, Are Induced in Arabidopsis during Infection with the Fungal Biotroph Erysiphe cichoracearum Â. Plant Physiology, 2003, 132, 821-829.	4.8	222
7	The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant Journal, 1999, 19, 269-278.	5.7	180
8	Wounding Enhances Expression of AtSUC3, a Sucrose Transporter from Arabidopsis Sieve Elements and Sink Tissues. Plant Physiology, 2004, 134, 684-693.	4.8	175
9	Monosaccharide transporters in plants: structure, function and physiology. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1465, 263-274.	2.6	155
10	A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant Journal, 1999, 17, 191-201.	5.7	143
11	A sink-specific H+/monosaccharide co-transporter from Nicotiana tabacum: cloning and heterologous expression in baker's yeast. Plant Journal, 1993, 4, 601-610.	5.7	132
12	Arabidopsis POLYOL TRANSPORTER5, a New Member of the Monosaccharide Transporter-Like Superfamily, Mediates H+-Symport of Numerous Substrates, Including myo-Inositol, Glycerol, and Ribose. Plant Cell, 2005, 17, 204-218.	6.6	129
13	Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. Current Opinion in Plant Biology, 2015, 25, 63-70.	7.1	121
14	Diurnal and Light-Regulated Expression of AtSTP1 in Guard Cells of Arabidopsis. Plant Physiology, 2003, 133, 528-537.	4.8	111
15	AtSTP6, a New Pollen-Specific H+-Monosaccharide Symporter from Arabidopsis. Plant Physiology, 2003, 131, 70-77.	4.8	106
16	Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars. Plant Journal, 2000, 24, 849-857.	5.7	100
17	<i>STP10</i> encodes a high-affinity monosaccharide transporter and is induced under low-glucose conditions in pollen tubes of Arabidopsis. Journal of Experimental Botany, 2016, 67, 2387-2399.	4.8	98
18	AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes. Plant Journal, 2004, 40, 120-130.	5.7	92

#	Article	IF	Citations
19	Functional and Physiological Characterization of <i>Arabidopsis INOSITOL TRANSPORTER1</i> , a Novel Tonoplast-Localized Transporter for <i>myo</i> -Inositol. Plant Cell, 2008, 20, 1073-1087.	6.6	84
20	C-terminal armadillo repeats are essential and sufficient for association of the plant U-box armadillo E3 ubiquitin ligase SAUL1 with the plasma membrane. Journal of Experimental Botany, 2011, 62, 775-785.	4.8	70
21	Arabidopsis INOSITOL TRANSPORTER2 Mediates H ⁺ Symport of Different Inositol Epimers and Derivatives across the Plasma Membrane. Plant Physiology, 2007, 145, 1395-1407.	4.8	68
22	Phloem-Specific Expression of Yang Cycle Genes and Identification of Novel Yang Cycle Enzymes in <i>Plantago</i> and <i>Arabidopsis</i>	6.6	63
23	Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTERS 1 and 2: fructose and xylitol/H+ symporters in pollen and young xylem cells. Journal of Experimental Botany, 2010, 61, 537-550.	4.8	60
24	AtSTP11, a pollen tube-specific monosaccharide transporter in Arabidopsis. Planta, 2005, 221, 48-55.	3.2	59
25	Sugar Transporter STP7 Specificity for I-Arabinose and d-Xylose Contrasts with the Typical Hexose Transporters STP8 and STP12. Plant Physiology, 2018, 176, 2330-2350.	4.8	59
26	Glucose Uptake via STP Transporters Inhibits in Vitro Pollen Tube Growth in a HEXOKINASE1-Dependent Manner in <i>Arabidopsis thaliana</i> . Plant Cell, 2018, 30, 2057-2081.	6.6	49
27	Protoplast-Esculin Assay as a New Method to Assay Plant Sucrose Transporters: Characterization of AtSUC6 and AtSUC7 Sucrose Uptake Activity in Arabidopsis Col-0 Ecotype. Frontiers in Plant Science, 2018, 9, 430.	3.6	43
28	<scp>MAIN</scp> â€ <scp>LIKE</scp> 1 is a crucial factor for correct cell division and differentiation in <i><scp>A</scp>rabidopsis thaliana</i> Plant Journal, 2014, 78, 107-120.	5.7	40
29	LATE, a C ₂ H ₂ zincâ€finger protein that acts as floral repressor. Plant Journal, 2011, 68, 681-692.	5.7	36
30	Phloem-Specific Methionine Recycling Fuels Polyamine Biosynthesis in a Sulfur-Dependent Manner and Promotes Flower and Seed Development. Plant Physiology, 2016, 170, 790-806.	4.8	22
31	Sorting of <i>Arabidopsis</i> NRAMP3 and NRAMP4 depends on adaptor protein complex AP4 and a dileucineâ€based motif. Traffic, 2018, 19, 503-521.	2.7	19
32	Novel PSI Domains in Plant and Animal H+-Inositol Symporters. Traffic, 2010, 11, 767-781.	2.7	16
33	The AtSUC2 Promoter: A Powerful Tool to Study Phloem Physiology and Development. Methods in Molecular Biology, 2019, 2014, 267-287.	0.9	12