Caroline Marty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9264393/publications.pdf

Version: 2024-02-01

257450 223800 2,218 48 24 46 citations g-index h-index papers 49 49 49 3064 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lessons from mouse models of MPN. International Review of Cell and Molecular Biology, 2022, 366, 125-185.	3.2	2
2	An inherited gainâ€ofâ€function risk allele in <scp><i>EPOR</i></scp> predisposes to familial <scp><i>JAK2</i>V617F</scp> myeloproliferative neoplasms. British Journal of Haematology, 2022, 198, 131-136.	2.5	6
3	Identification of biallelic germline variants of SRP68 in a sporadic case with severe congenital neutropenia. Haematologica, 2021, 106, 1216-1219.	3.5	10
4	CALR mutant protein rescues the response of MPL p.R464G variant associated with CAMT to eltrombopag. Blood, 2021, 138, 480-485.	1.4	3
5	Induced Pluripotent Stem Cells Enable Disease Modeling and Drug Screening in Calreticulin del52 and ins5 Myeloproliferative Neoplasms. HemaSphere, 2021, 5, e593.	2.7	5
6	PPAR \hat{l}^3 agonists promote the resolution of myelofibrosis in preclinical models. Journal of Clinical Investigation, 2021, 131, .	8.2	4
7	Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms. Blood, 2021, 138, 2231-2243.	1.4	25
8	Immunosuppression by Mutated Calreticulin Released from Malignant Cells. Molecular Cell, 2020, 77, 748-760.e9.	9.7	77
9	Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN. Nature Communications, 2020, 11, 4886.	12.8	27
10	Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Reviews, 2020, 42, 100710.	5.7	16
11	Different impact of calreticulin mutations on human hematopoiesis in myeloproliferative neoplasms. Oncogene, 2020, 39, 5323-5337.	5.9	12
12	TET2 haploinsufficiency alters reprogramming into induced pluripotent stem cells. Stem Cell Research, 2020, 44, 101755.	0.7	5
13	Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood, 2020, 135, 133-144.	1.4	52
14	MCM8- and MCM9 Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. Cell Reports, 2019, 28, 2851-2865.e4.	6.4	20
15	The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications. Expert Review of Hematology, 2019, 12, 437-448.	2.2	20
16	Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood, 2019, 133, 2669-2681.	1.4	74
17	Not just another kinase mutation!. Blood, 2019, 134, 2335-2337.	1.4	O
18	Description of a knock-in mouse model of JAK2V617F MPN emerging from a minority of mutated hematopoietic stem cells. Blood, 2019, 134, 2383-2387.	1.4	18

#	Article	IF	CITATIONS
19	Rare type 1-like and type 2-like calreticulin mutants induce similar myeloproliferative neoplasms as prevalent type 1 and 2 mutants in mice. Oncogene, 2019, 38, 1651-1660.	5.9	7
20	New pathogenic mechanisms induced by germline erythropoietin receptor mutations in primary erythrocytosis. Haematologica, 2018, 103, 575-586.	3.5	17
21	JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Research, 2018, 7, 82.	1.6	126
22	Mutations in the SRP54 gene cause severe congenital neutropenia as well as Shwachman-Diamond–like syndrome. Blood, 2018, 132, 1318-1331.	1.4	85
23	Secreted Mutant Calreticulins As Rogue Cytokines Trigger Thrombopoietin Receptor Activation Specifically in CALR Mutated Cells: Perspectives for MPN Therapy. Blood, 2018, 132, 4-4.	1.4	32
24	Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis. Frontiers in Endocrinology, 2017, 8, 234.	3.5	39
25	Identification of MPL R102P Mutation in Hereditary Thrombocytosis. Frontiers in Endocrinology, 2017, 8, 235.	3.5	22
26	Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood, 2016, 127, 1317-1324.	1.4	220
27	Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood, 2016, 127, 1325-1335.	1.4	261
28	New Insights into Mechanisms of Erythropoietin Receptor Mutations in Primary Familial and Congenital Polycythemia. Blood, 2016, 128, 631-631.	1.4	2
29	P53 activation inhibits all types of hematopoietic progenitors and all stages of megakaryopoiesis. Oncotarget, 2016, 7, 31980-31992.	1.8	38
30	Calreticulin Mutants Induce an Early Clonal Dominance and a Megakaryocytic Phenotype through the Activation of MPL/JAK2 Pathway in Human Primary Cells. Blood, 2016, 128, 1959-1959.	1.4	1
31	Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nature Genetics, 2015, 47, 1131-1140.	21.4	107
32	Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood, 2014, 123, 1372-1383.	1.4	69
33	TET2 Deficiency Inhibits Mesoderm and Hematopoietic Differentiation in Human Embryonic Stem Cells. Stem Cells, 2014, 32, 2084-2097.	3.2	34
34	Calr Mutants Retroviral Mouse Models Lead to a Myeloproliferative Neoplasm Mimicking an Essential Thrombocythemia Progressing to a Myelofibrosis. Blood, 2014, 124, 157-157.	1.4	11
35	JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. Blood, 2013, 122, 1464-1477.	1.4	122
36	Germline JAK2 Mutations In The Kinase Domain Are Responsible For Hereditary Thrombocytosis and Are Resistant To JAK2 and HSP90 Inhibitors. Blood, 2013, 122, 1603-1603.	1.4	46

3

#	Article	IF	CITATION
37	The cell cycle regulator CDC25A is a target for JAK2V617F oncogene. Blood, 2012, 119, 1190-1199.	1.4	34
38	Thrombopoietin receptor down-modulation by JAK2 V617F: restoration of receptor levels by inhibitors of pathologic JAK2 signaling and of proteasomes. Blood, 2012, 119, 4625-4635.	1.4	49
39	Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood, 2010, 116, 783-787.	1.4	148
40	Heterotrimeric G Protein Signaling Outside the Realm of Seven Transmembrane Domain Receptors. Molecular Pharmacology, 2010, 78, 12-18.	2.3	54
41	A Senescence-Like Cell-Cycle Arrest Occurs During Megakaryocytic Maturation: Implications for Physiological and Pathological Megakaryocytic Proliferation. PLoS Biology, 2010, 8, e1000476.	5.6	81
42	Ligand-independent Thrombopoietin Mutant Receptor Requires Cell Surface Localization for Endogenous Activity. Journal of Biological Chemistry, 2009, 284, 11781-11791.	3.4	13
43	Selective reduction of JAK2V617F-dependent cell growth by siRNA/shRNA and its reversal by cytokines. Blood, 2009, 114, 1842-1851.	1.4	24
44	Ligand-Independent MPLW515L Activity Requires Cell Surface Localization. Blood, 2008, 112, 2891-2891.	1.4	0
45	Activation State-Dependent Interaction between Gαi and p67 phox. Molecular and Cellular Biology, 2006, 26, 5190-5200.	2.3	9
46	Identification of Tetratricopeptide Repeat 1 as an Adaptor Protein That Interacts with Heterotrimeric G Proteins and the Small GTPase Ras. Molecular and Cellular Biology, 2003, 23, 3847-3858.	2.3	47
47	Functional Analysis of Type 1α cGMP-dependent Protein Kinase Using Green Fluorescent Fusion Proteins. Journal of Biological Chemistry, 2001, 276, 13039-13048.	3.4	48
48	Nitric Oxide Activation of p38 Mitogen-activated Protein Kinase in 293T Fibroblasts Requires	3.4	96