
Neil McNaughton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263713/publications.pdf Version: 2024-02-01

NEU MCNAUCHTON

#	Article	IF	CITATIONS
1	The non-human perspective on the neurobiology of temperament, personality, and psychopathology: what's next?. Current Opinion in Behavioral Sciences, 2022, 43, 255-262.	3.9	4
2	Neuropsychological Theory as a Basis for Clinical Translation of Animal Models of Neuropsychiatric Disorder. Frontiers in Behavioral Neuroscience, 2022, 16, .	2.0	1
3	What is next for the neurobiology of temperament, personality and psychopathology?. Current Opinion in Behavioral Sciences, 2022, 45, 101143.	3.9	7
4	Construction of complex memories via parallel distributed cortical–subcortical iterative integration. Trends in Neurosciences, 2022, 45, 550-562.	8.6	18
5	Dynamic interaction between hippocampus, orbitofrontal cortex, and subthalamic nucleus during goal conflict in the stop signal task in rats. Neuroscience Research, 2022, , .	1.9	1
6	Speed modulation of hippocampal theta frequency and amplitude predicts water maze learning. Hippocampus, 2021, 31, 201-212.	1.9	2
7	Construction of simple, customised, brain-spanning, multi-channel, linear microelectrode arrays. Journal of Neuroscience Methods, 2021, 348, 109011.	2.5	5
8	Laterality of an EEG anxiety disorder biomarker largely follows handedness. Cortex, 2021, 140, 210-221.	2.4	7
9	Anterior thalamic nuclei neurons sustain memory. Current Research in Neurobiology, 2021, 2, 100022.	2.3	11
10	Right frontal anxiolytic-sensitive EEG â€~theta' rhythm in the stop-signal task is a theory-based anxiety disorder biomarker. Scientific Reports, 2021, 11, 19746.	3.3	15
11	Early and late signals of unexpected reward contribute to low extraversion and high disinhibition, respectively. Personality Neuroscience, 2021, 4, e5.	1.6	1
12	Effects of ketamine in patients with treatment-refractory generalized anxiety and social anxiety disorders: Exploratory double-blind psychoactive-controlled replication study. Journal of Psychopharmacology, 2020, 34, 267-272.	4.0	40
13	Ketamine and neuroticism: a double-hit hypothesis of internalizing disorders. Personality Neuroscience, 2020, 3, e2.	1.6	10
14	Trait depressivity prediction with EEG signals via LSBoost. , 2020, , .		0
15	Personality neuroscience and psychopathology: should we start with biology and look for neural-level factors?. Personality Neuroscience, 2020, 3, e4.	1.6	10
16	Mixed Effects of Low-dose Ethanol on Cortical and Hippocampal Theta Oscillations. Neuroscience, 2020, 429, 213-224.	2.3	4
17	Goal-Conflict EEG Theta and Biased Economic Decisions: A Role for a Second Negative Motivation System. Frontiers in Neuroscience, 2020, 14, 342.	2.8	10
18	Human anxiety-specific "theta―occurs with selective stopping and localizes to right inferior frontal gyrus Behavioral Neuroscience, 2020, 134, 547-555.	1.2	9

#	Article	IF	CITATIONS
19	Anxiety process "theta―biomarker in the stop signal task eliminated by a preceding relaxation test Behavioral Neuroscience, 2020, 134, 556-561.	1.2	3
20	Does behavioural inhibition system dysfunction contribute to Attention Deficit Hyperactivity Disorder?. Personality Neuroscience, 2019, 2, e5.	1.6	5
21	Hierarchical Levels of Control: The State-Trait Distinction. Psychological Inquiry, 2019, 30, 158-164.	0.9	1
22	Brain maps of fear and anxiety. Nature Human Behaviour, 2019, 3, 662-663.	12.0	15
23	Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Progress in Neurobiology, 2019, 177, 33-72.	5.7	90
24	AnxietyDecoder: An EEC-based Anxiety Predictor using a 3-D Convolutional Neural Network. , 2019, , .		2
25	Higuchi's fractal dimension, but not frontal or posterior alpha asymmetry, predicts PID-5 anxiousness more than depressivity. Scientific Reports, 2019, 9, 19666.	3.3	15
26	Environmental enrichment increases prefrontal EEG power and synchrony with the hippocampus in rats with anterior thalamus lesions. Hippocampus, 2019, 29, 128-140.	1.9	7
27	Behavioural inhibition and valuation of gain/loss are neurally distinct from approach/withdrawal. Behavioral and Brain Sciences, 2019, 42, e132.	0.7	0
28	Survival circuits and risk assessment. Current Opinion in Behavioral Sciences, 2018, 24, 14-20.	3.9	67
29	Ketamine Effects on EEG during Therapy of Treatment-Resistant Generalized Anxiety and Social Anxiety. International Journal of Neuropsychopharmacology, 2018, 21, 717-724.	2.1	26
30	Safety and efficacy of maintenance ketamine treatment in patients with treatment-refractory generalised anxiety and social anxiety disorders. Journal of Psychopharmacology, 2018, 32, 663-667.	4.0	58
31	What do you mean â€~anxiety'? Developing the first anxiety syndrome biomarker. Journal of the Royal Society of New Zealand, 2018, 48, 177-190.	1.9	17
32	Some Metatheoretical Principles for Personality Neuroscience. Personality Neuroscience, 2018, 1, e11.	1.6	16
33	The neural basis of delay discounting: A review and preliminary model. Neuroscience and Biobehavioral Reviews, 2017, 79, 48-65.	6.1	106
34	Ketamine's dose-related effects on anxiety symptoms in patients with treatment refractory anxiety disorders. Journal of Psychopharmacology, 2017, 31, 1302-1305.	4.0	83
35	Removing eye blink artefacts from EEG—A single-channel physiology-based method. Journal of Neuroscience Methods, 2017, 291, 213-220.	2.5	31
36	Bi-Directional Theta Modulation between the Septo-Hippocampal System and the Mammillary Area in Free-Moving Rats. Frontiers in Neural Circuits, 2017, 11, 62.	2.8	18

#	Article	IF	CITATIONS
37	A Critical Assessment of Directed Connectivity Estimates with Artificially Imposed Causality in the Supramammillary-Septo-Hippocampal Circuit. Frontiers in Systems Neuroscience, 2017, 11, 72.	2.5	8
38	Mechanisms of comorbidity, continuity, and discontinuity in anxiety-related disorders. Development and Psychopathology, 2016, 28, 1053-1069.	2.3	52
39	Anxiolytic-like effects of leptin on fixed interval responding. Pharmacology Biochemistry and Behavior, 2016, 148, 15-20.	2.9	7
40	Neuroscience of Motivation and Organizational Behavior: Putting the Reinforcement Sensitivity Theory (RST) to Work. Advances in Motivation and Achievement: A Research Annual, 2016, 19, 65-92.	0.3	20
41	Approach/Avoidance. , 2016, , 25-49.		77
42	Testing an anxiety process biomarker: Generalisation from an auditory to a visual stimulus. Biological Psychology, 2016, 117, 50-55.	2.2	8
43	Neural Mechanisms of Low Trait Anxiety and Risk for Externalizing Behavior. , 2015, , .		1
44	The frequency of hippocampal theta rhythm is modulated on a circadian period and is entrained by food availability. Frontiers in Behavioral Neuroscience, 2015, 9, 61.	2.0	18
45	An improved human anxiety process biomarker: characterization of frequency band, personality and pharmacology. Translational Psychiatry, 2015, 5, e699-e699.	4.8	28
46	Anterior thalamic nuclei lesions and recovery of function: Relevance to cognitive thalamus. Neuroscience and Biobehavioral Reviews, 2015, 54, 145-160.	6.1	37
47	Approach, avoidance, and their conflict: the problem of anchoring. Frontiers in Systems Neuroscience, 2014, 8, 124.	2.5	66
48	Anterior thalamic lesions reduce spine density in both hippocampal CA1 and retrosplenial cortex, but enrichment rescues CA1 spines only. Hippocampus, 2014, 24, 1232-1247.	1.9	39
49	Effects of thalamic lesions on repeated relearning of a spatial working memory task. Behavioural Brain Research, 2014, 261, 56-59.	2.2	5
50	Development of a theoretically-derived human anxiety syndrome biomarker. Translational Neuroscience, 2014, 5, .	1.4	6
51	Anti-anxiety drugs reduce conflict-specific "thetaâ€â€"A possible human anxiety-specific biomarker. Journal of Affective Disorders, 2013, 148, 104-111.	4.1	47
52	A comparison of phenylketonuria with attention deficit hyperactivity disorder: Do markedly different aetiologies deliver common phenotypes?. Brain Research Bulletin, 2013, 99, 63-83.	3.0	23
53	Motivation and Personality: A Neuropsychological Perspective. Social and Personality Psychology Compass, 2013, 7, 158-175.	3.7	211
54	Neuroscience and approach/avoidance personality traits: A two stage (valuation–motivation) approach. Neuroscience and Biobehavioral Reviews, 2012, 36, 2339-2354.	6.1	230

#	Article	IF	CITATIONS
55	Septal elicitation of hippocampal theta rhythm did not repair cognitive and emotional deficits resulting from vestibular lesions. Hippocampus, 2012, 22, 1176-1187.	1.9	24
56	An economic perspective on the Reinforcement Sensitivity Theory of personality. Personality and Individual Differences, 2011, 51, 242-247.	2.9	16
57	Trait anxiety, trait fear and emotionality: The perspective from non-human studies. Personality and Individual Differences, 2011, 50, 898-906.	2.9	13
58	Frontal theta power linked to neuroticism and avoidance. Cognitive, Affective and Behavioral Neuroscience, 2011, 11, 396-403.	2.0	30
59	Stopping, goal-conflict, trait anxiety and frontal rhythmic power in the stop-signal task. Cognitive, Affective and Behavioral Neuroscience, 2011, 11, 485-493.	2.0	44
60	Minimal driving of hippocampal theta by the supramammillary nucleus during water maze learning. Hippocampus, 2011, 21, 1074-1081.	1.9	15
61	Fear, anxiety and their disorders: Past, present and future neural theories Psychology and Neuroscience, 2011, 4, 173-181.	0.8	20
62	Sensitivity to delay of reinforcement in two animal models of attention deficit hyperactivity disorder (ADHD). Behavioural Brain Research, 2009, 205, 372-376.	2.2	28
63	Coupling of Theta Oscillations between Anterior and Posterior Midline Cortex and with the Hippocampus in Freely Behaving Rats. Cerebral Cortex, 2009, 19, 24-40.	2.9	125
64	Frontal-midline theta from the perspective of hippocampal "theta― Progress in Neurobiology, 2008, 86, 156-185.	5.7	417
65	Chapter 2.1 Theoretical approaches to the modeling of anxiety in animals. Handbook of Behavioral Neuroscience, 2008, 17, 11-27.	0.7	14
66	The neuropsychology of fear and anxiety: a foundation for Reinforcement Sensitivity Theory. , 2008, , 44-94.		113
67	Reinforcement Sensitivity Theory and personality. , 2008, , 155-187.		82
68	Effects of fluoxetine on hippocampal rhythmic slow activity and behavioural inhibition. Behavioural Pharmacology, 2008, 19, 257-264.	1.7	15
69	The Neurobiology of Anxiety: Potential for Co-Morbidity of Anxiety and Substance Use Disorders. , 2008, , 19-33.		9
70	Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function?. Behavioural Pharmacology, 2007, 18, 329-346.	1.7	134
71	The role of the subiculum within the behavioural inhibition system. Behavioural Brain Research, 2006, 174, 232-250.	2.2	57
72	The septal EEG suggests a distributed organization of the pacemaker of hippocampal theta in the rat. European Journal of Neuroscience, 2006, 24, 155-166.	2.6	27

#	Article	IF	CITATIONS
73	Restoring theta-like rhythmicity in rats restores initial learning in the Morris water maze. Hippocampus, 2006, 16, 1102-1110.	1.9	192
74	The conceptual nervous system of J.A. Gray: Schizophrenia and consciousness. Neuroscience and Biobehavioral Reviews, 2005, 29, 911-912.	6.1	0
75	Different systems in the posterior hypothalamic nucleus of rats control theta frequency and trigger movement. Behavioural Brain Research, 2005, 163, 107-114.	2.2	14
76	A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neuroscience and Biobehavioral Reviews, 2004, 28, 285-305.	6.1	1,121
77	Dissociation of hypertension and fixed interval responding in two separate strains of genetically hypertensive rat. Behavioural Brain Research, 2004, 152, 393-401.	2.2	18
78	The supramammillary area: its organization, functions and relationship to the hippocampus. Progress in Neurobiology, 2004, 74, 127-166.	5.7	157
79	Multiple hypothalamic sites control the frequency of hippocampal theta rhythm. Hippocampus, 2003, 13, 361-374.	1.9	35
80	Hebb, Pandemonium and Catastrophic Hypermnesia: The Hippocampus as a Suppressor of Inappropriate Associations. Cortex, 2003, 39, 1139-1163.	2.4	44
81	McNaughton and Gray final word. Neuropsychological Rehabilitation, 2002, 12, 373-373.	1.6	1
82	"The neuropsychology of anxiety" as it really is: A response to O'Mara (2001). Neuropsychological Rehabilitation, 2002, 12, 363-367.	1.6	6
83	Benzodiazepine receptors in the medial-posterior hypothalamus mediate the reduction of hippocampal theta frequency by chlordiazepoxide. Brain Research, 2002, 954, 194-201.	2.2	10
84	The role of the medial supramammillary nucleus in the control of hippocampal theta activity and behaviour in rats. European Journal of Neuroscience, 2002, 16, 1797-1809.	2.6	72
85	Similar effects of medial supramammillary or systemic injection of chlordiazepoxide on both theta frequency and fixed-interval responding. Cognitive, Affective and Behavioral Neuroscience, 2002, 2, 76-83.	2.0	40
86	Chlordiazepoxide specifically impairs nonspatial reference memory in the cued radial arm maze in rats. Pharmacology Biochemistry and Behavior, 2001, 70, 133-139.	2.9	8
87	Common Firing Patterns of Hippocampal Cells in a Differential Reinforcement of Low Rates of Response Schedule. Journal of Neuroscience, 2000, 20, 7043-7051.	3.6	43
88	Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. Journal of Affective Disorders, 2000, 61, 161-176.	4.1	411
89	A gene promotes anxiety in mice—and also in scientists. Nature Medicine, 1999, 5, 1131-1132.	30.7	6

90 Eliminating emotions?. Metascience, 1999, 8, 5-49.

0.3 1

#	Article	IF	CITATIONS
91	The medial supramammillary nucleus, spatial learning and the frequency of hippocampal theta activity. Brain Research, 1997, 764, 101-108.	2.2	105
92	Cognitive Dysfunction Resulting from Hippocampal Hyperactivity—A Possible Cause of Anxiety Disorder?. Pharmacology Biochemistry and Behavior, 1997, 56, 603-611.	2.9	145
93	The pituitary-adrenal axis and the different behavioral effects of buspirone and chlordiazepoxide. Pharmacology Biochemistry and Behavior, 1996, 54, 51-56.	2.9	47
94	Contribution of synapses in the medial supramammillary nucleus to the frequency of hippocampal theta rhythm in freely moving rats. Hippocampus, 1995, 5, 534-545.	1.9	97
95	Minimal changes with long-term administration of anxiolytics on septal driving of hippocampal rhythmical slow activity. Psychopharmacology, 1995, 118, 93-100.	3.1	13
96	Stimulus properties of some analogues of 4-methylaminorex. Pharmacology Biochemistry and Behavior, 1995, 51, 375-378.	2.9	8
97	Similar effects of buspirone and chlordiazepoxide on a fixed interval schedule with long-term, low-dose administration. Journal of Psychopharmacology, 1995, 9, 326-330.	4.0	31
98	Effects of long-term administration of phenelzine on reticular-elicited hippocampal rhythmical slow activity. Neuroscience Research, 1995, 21, 311-316.	1.9	9
99	The hippocampus: Relational processor or antiprocessor?. Behavioral and Brain Sciences, 1994, 17, 487-488.	0.7	28
100	A comparison of the acute effects of a tricyclic and a MAOI antidepressant on septal driving of hippocampal rhythmical slow activity. Psychopharmacology, 1994, 114, 337-344.	3.1	25
101	The interaction of serotonin depletion with anxiolytics and antidepressants on reticular-elicited hippocampal RSA. Neuropharmacology, 1994, 33, 1597-1605.	4.1	20
102	Effects of long-term administration of antidepressants on septal driving of hippocampal rsa. International Journal of Neuroscience, 1994, 79, 91-98.	1.6	8
103	Mapping the differential effects of procaine on frequency and amplitude of reticularly elicited hippocampal rhythmical slow activity. Hippocampus, 1993, 3, 517-525.	1.9	170
104	Naloxone and chlordiazepoxide: effects on acquisition of DRL and signalled DRL. Journal of Psychopharmacology, 1992, 6, 88-94.	4.0	3
105	Pindolol antagonizes the effects on hippocampal rhythmical slow activity of clonidine, baclofen and 8-OH-DPAT, but not chlordiazepoxide and sodium amylobarbitone. Neuroscience, 1992, 46, 83-90.	2.3	18
106	Alzheimer's dementia produces a loss of discrimination but no increase in rate of memory decay in delayed matching to sample. Neuropsychologia, 1992, 30, 133-143.	1.6	60
107	Schedule dependence of the interaction of naloxone and chlordiazepoxide. Pharmacology Biochemistry and Behavior, 1992, 41, 475-481.	2.9	23
108	Buspirone produces a dose-related impairment in spatial navigation. Pharmacology Biochemistry and Behavior, 1992, 43, 167-171.	2.9	61

#	Article	IF	CITATIONS
109	Buspirone affects hippocampal rhythmical slow activity through serotonin1A rather than dopamine D2 receptors. Neuroscience, 1991, 40, 169-174.	2.3	45
110	Effects of GABAA and GABAB receptor agonists on reticular-elicited hippocampal rhythmical slow activity. European Journal of Pharmacology, 1991, 192, 103-108.	3.5	11
111	Neurochemically dissimilar anxiolytic drugs have common effects on hippocampal rhythmic slow activity. Neuropharmacology, 1991, 30, 855-863.	4.1	61
112	Effects of long-term administration of anxiolytics on reticular-elicited hippocampal rhythmical slow activity. Neuropharmacology, 1991, 30, 1095-1099.	4.1	22
113	Supramammillary cell firing and hippocampal rhythmical slow activity. NeuroReport, 1991, 2, 723.	1.2	205
114	Comparison of the effects of buspirone and chlordiazepoxide on successive discrimination. Pharmacology Biochemistry and Behavior, 1991, 39, 275-278.	2.9	10
115	Naloxone and chlordiazepoxide: Effects on acquisition and performance of signalled punishment. Pharmacology Biochemistry and Behavior, 1991, 38, 43-47.	2.9	9
116	Effects of long-term administration of imipramine on reticular-elicited hippocampal rhythmical slow activity. Psychopharmacology, 1991, 105, 433-438.	3.1	13
117	Effects of buspirone on fixed interval responding in rats. Journal of Psychopharmacology, 1991, 5, 410-417.	4.0	7
118	Dose-response analysis of the effects of buspirone on rearing in rats. Journal of Psychopharmacology, 1991, 5, 72-76.	4.0	10
119	Evolution and connectionism. Behavioral and Brain Sciences, 1990, 13, 402-403.	0.7	0
120	Chlordiazepoxide reduces discriminability but not rate of forgetting in delayed conditional discrimination. Psychopharmacology, 1990, 101, 550-554.	3.1	42
121	Effects of ethanol and Ro 15-4513 in an electrophysiological model of anxiolytic action. Neuroscience, 1990, 35, 669-674.	2.3	46
122	Effects of the NMDA antagonists CPP and MK-801 on delayed conditional discrimination. Psychopharmacology, 1989, 98, 556-560.	3.1	68
123	Low dose scopolamine affects discriminability but not rate of forgetting in delayed conditional discrimination. Psychopharmacology, 1988, 96, 541-546.	3.1	99
124	Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behavioural Brain Research, 1987, 24, 39-46.	2.2	180
125	Naloxone blocks the effects of chlordiazepoxide on acquisition but not performance of differential reinforcement of low rates of response (DRL). Psychopharmacology, 1987, 91, 112-118.	3.1	38
126	Naloxone fails to block the effects of chlordiazepoxide on acquisition and performance of successive discrimination. Psychopharmacology, 1987, 91, 119-121.	3.1	33

#	Article	IF	CITATIONS
127	Reticular elicitation of hippocampal slow waves: Common effects of some anxiolytic drugs. Neuroscience, 1986, 19, 899-903.	2.3	73
128	Collateral specific long term potentiation of the output of field CA3 of the hippocampus of the rat. Experimental Brain Research, 1986, 62, 250-8.	1.5	12
129	Anxiolytic-like action of melatonin on acquisition but not performance of DRL. Pharmacology Biochemistry and Behavior, 1986, 24, 1497-1502.	2.9	9
130	Is the hippocampus a store, intermediate or otherwise?. Behavioral and Brain Sciences, 1985, 8, 508-509.	0.7	23
131	The effects of systemic and intraseptal injections of sodium amylobarbitone on rearing and ambulation in rats. Australian Journal of Psychology, 1985, 37, 15-27.	2.8	22
132	Chlordiazepoxide and successive discrimination: Different effects on acquisition and performance. Pharmacology Biochemistry and Behavior, 1985, 23, 487-494.	2.9	48
133	Septal driving of hippocampal theta rhythm: Role of Î ³ -aminobutyrate-benzodiazepine receptor complex in mediating effects of anxiolytics. Neuroscience, 1985, 16, 875-884.	2.3	22
134	Interactions between Hippocampal Serotonin and the Pituitary-Adrenal Axis in the Septal Driving of Hippocampal Theta-Rhythm. Neuroendocrinology, 1984, 39, 471-475.	2.5	28
135	Medial septal projections to the dentate gyrus of the rat: electrophysiological analysis of distribution and plasticity. Experimental Brain Research, 1984, 56, 243-56.	1.5	39
136	Differences in synaptic transmission between medial and lateral components of the perforant path. Brain Research, 1984, 303, 251-260.	2.2	57
137	Comparison between the behavioural effects of septal and hippocampal lesions: A review. Neuroscience and Biobehavioral Reviews, 1983, 7, 119-188.	6.1	646
138	Pavlovian Counterconditioning is Unchanged by Chlordiazepoxide or by Septal Lesions. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 1983, 35, 221-233.	2.8	33
139	Gray's <i>Neuropsychology of anxiety</i> : An enquiry into the functions of septohippocampal theories. Behavioral and Brain Sciences, 1982, 5, 492-493.	0.7	31
140	Effects of early undernutrition on hippocampal development and function. Research in Experimental Medicine, 1982, 180, 201-207.	0.7	57
141	Spontaneous alternation of body turns and place: Differential effects of amylobarbitone, scopolamine and septal lesions. Psychopharmacology, 1980, 68, 201-206.	3.1	35
142	Septal elicitation of hippocampal theta rhythm after localized de-afferentation of serotoninergic fibers. Brain Research, 1980, 200, 259-269.	2.2	90
143	Unilateral blockade of the dorsal ascending noradrenergic bundle and septal elicitation of hippocampal theta rhythm. Neuroscience Letters, 1980, 18, 67-72.	2.1	14
144	The neuropsychology and neuropharmacology of the dorsal ascending noradrenergic bundle—a review. Progress in Neurobiology, 1980, 14, 157-219.	5.7	161

#	Article	IF	CITATIONS
145	Reticular stimulation and hippocampal theta rhythm in rats: Effects of drugs. Neuroscience, 1978, 3, 629-632.	2.3	112
146	Septal driving of hippocampal theta rhythm as a function of frequency in the male rat: Effects of drugs. Neuroscience, 1977, 2, 1019-1027.	2.3	118
147	Septal driving of the hippocampal theta rhythm as a function of frequency in the male rat: Effects of adreno-pituitary hormones. Neuroscience, 1977, 2, 1029-1032.	2.3	58
148	Septal driving of hippocampal theta rhythm as a function of frequency in the free-moving male rat. Neuroscience, 1977, 2, 1007-1017.	2.3	113
149	Sex and strain differences in septal driving of the hippocampal theta rhythm as a function of frequency: Effects of gonadectomy and gonadal hormones. Neuroscience, 1977, 2, 1033-1041.	2.3	65
150	Effect of minor tranquillisers on hippocampal \hat{I}_{J} rhythm mimicked by depletion of forebrain noradrenaline. Nature, 1975, 258, 424-425.	27.8	199
151	Aminergic Transmitter Systems. , 0, , 895-913.		10
152	Right Frontal Theta: Is It a Response Biomarker for Ketamine's Therapeutic Action in Anxiety Disorders?. Frontiers in Neuroscience, 0, 16, .	2.8	0