Gareth Hathaway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263312/publications.pdf

Version: 2024-02-01

279798 276875 1,781 43 23 41 g-index citations h-index papers 45 45 45 2055 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The challenges of treating osteoarthritis pain and opportunities for novel peripherally directed therapeutic strategies. Neuropharmacology, 2022, 213, 109075.	4.1	9
2	Anxiety enhances pain in a model of osteoarthritis and is associated with altered endogenous opioid function and reduced opioid analgesia. Pain Reports, 2021, 6, e956.	2.7	6
3	Spinal neuronal excitability and neuroinflammation in a model of chemotherapeutic neuropathic pain: targeting the resolution pathways. Journal of Neuroinflammation, 2020, 17, 316.	7.2	15
4	Neonatal complete Freund's adjuvant-induced inflammation does not induce or alter hyperalgesic priming or alter adult distributions of C-fibre dorsal horn innervation. Pain Reports, 2020, 5, e872.	2.7	0
5	The changing role of descending control of spinal nociception over postnatal development. Current Opinion in Physiology, 2019, 11, 93-96.	1.8	5
6	Pain relief in children and adolescents. Pain, 2019, 160, 1687-1688.	4.2	1
7	Laminaâ€specific population encoding of cutaneous signals in the spinal dorsal horn using multiâ€electrode arrays. Journal of Physiology, 2019, 597, 377-397.	2.9	7
8	Cancer Chemotherapy in Early Life Significantly Alters the Maturation of Pain Processing. Neuroscience, 2018, 387, 214-229.	2.3	10
9	Stroking modulates noxious-evoked brain activity in human infants. Current Biology, 2018, 28, R1380-R1381.	3.9	67
10	The Peptide PnPP-19, a Spider Toxin Derivative, Activates ν-Opioid Receptors and Modulates Calcium Channels. Toxins, 2018, 10, 43.	3.4	14
11	Differential contributions of peripheral and central mechanisms to pain in a rodent model of osteoarthritis. Scientific Reports, 2018, 8, 7122.	3 . 3	28
12	The influence of the descending pain modulatory system on infant pain-related brain activity. ELife, 2018, 7, .	6.0	46
13	Age-dependent plasticity in endocannabinoid modulation of pain processing through postnatal development. Pain, 2017, 158, 2222-2232.	4.2	12
14	Inhibitory effects of aspirin-triggered resolvin D1 on spinal nociceptive processing in rat pain models. Journal of Neuroinflammation, 2016, 13, 233.	7.2	24
15	Neuron-immune mechanisms contribute to pain in early stages of arthritis. Journal of Neuroinflammation, 2016, 13, 96.	7.2	81
16	A quantification of the relationship between neuronal responses in the rat rostral ventromedial medulla and noxious stimulationâ€evoked withdrawal reflexes. European Journal of Neuroscience, 2015, 42, 1726-1737.	2.6	10
17	Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain. Annals of the Rheumatic Diseases, 2015, 74, 252-259.	0.9	95
18	Surgical Injury in the Neonatal Rat Alters the Adult Pattern of Descending Modulation from the Rostroventral Medulla. Anesthesiology, 2015, 122, 1391-1400.	2.5	56

#	Article	IF	Citations
19	Developmental alterations in noxious-evoked EEG activity recorded from rat primary somatosensory cortex. Neuroscience, 2015, 305, 343-350.	2.3	16
20	Overcoming the Barriers to Greater Public Engagement. PLoS Biology, 2014, 12, e1001761.	5.6	21
21	Acute and Chronic Pain in Children. Current Topics in Behavioral Neurosciences, 2014, 20, 349-366.	1.7	5
22	Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat. Pain, 2014, 155, 168-178.	4.2	47
23	Risk-Based Learning Games Improve Long-Term Retention of Information among School Pupils. PLoS ONE, 2014, 9, e103640.	2.5	11
24	Cannabinoid CB2 Receptors Regulate Central Sensitization and Pain Responses Associated with Osteoarthritis of the Knee Joint. PLoS ONE, 2013, 8, e80440.	2.5	83
25	Developmental pharmacology of opioids. , 2013, , 449-456.		0
26	The Emergence of Adolescent Onset Pain Hypersensitivity following Neonatal Nerve Injury. Molecular Pain, 2012, 8, 1744-8069-8-30.	2.1	59
27	A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain, 2012, 153, 775-783.	4.2	63
28	The Contribution of Spinal Glial Cells to Chronic Pain Behaviour in the Monosodium Iodoacetate Model of Osteoarthritic Pain. Molecular Pain, 2011, 7, 1744-8069-7-88.	2.1	105
29	The changing balance of brainstem–spinal cord modulation of pain processing over the first weeks of rat postnatal life. Journal of Physiology, 2009, 587, 2927-2935.	2.9	104
30	Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain, 2009, 144, 110-118.	4.2	115
31	Origins, Actions and Dynamic Expression Patterns of the Neuropeptide VGF in Rat Peripheral and Central Sensory Neurones Following Peripheral Nerve Injury. Molecular Pain, 2008, 4, 1744-8069-4-62.	2.1	40
32	Midazolam Potentiates Nociceptive Behavior, Sensitizes Cutaneous Reflexes, and Is Devoid of Sedative Action in Neonatal Rats. Anesthesiology, 2008, 108, 122-129.	2.5	47
33	Spinal microglia and neuropathic pain in young rats. Pain, 2007, 128, 215-224.	4.2	106
34	Time Course and Dose-Dependence of Nerve Growth Factor–Induced Secondary Hyperalgesia in the Mouse. Journal of Pain, 2006, 7, 57-61.	1.4	30
35	Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Molecular and Cellular Neurosciences, 2006, 31, 539-548.	2.2	148
36	A postnatal switch in GABAergic control of spinal cutaneous reflexes. European Journal of Neuroscience, 2006, 23, 112-118.	2.6	33

#	Article	IF	CITATIONS
37	An mTph2 SNP gives rise to alterations in extracellular 5-HT levels, but not in performance on a delayed-reinforcement task. European Journal of Neuroscience, 2005, 22, 997-1000.	2.6	17
38	Somatostatin induces striatal dopamine release and contralateral turning behaviour in the mouse. Neuroscience Letters, 2004, 358, 127-131.	2.1	12
39	Somatostatin receptor 2 knockout/lacZknockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum. European Journal of Neuroscience, 2003, 17, 1881-1895.	2.6	73
40	Somatostatin release by glutamate in vivo is primarily regulated by AMPA receptors. British Journal of Pharmacology, 2001, 134, 1155-1158.	5.4	10
41	Evidence that somatostatin sst2 receptors mediate striatal dopamine release. British Journal of Pharmacology, 1999, 128, 1346-1352.	5.4	34
42	Identification of somatostatin sst2(a) receptor expressing neurones in central regions involved in nociception. Brain Research, 1998, 798, 25-35.	2.2	58
43	Somatostatin Potently Stimulates In Vivo Striatal Dopamine and γâ€Aminobutyric Acid Release by a Glutamateâ€Dependent Action. Journal of Neurochemistry, 1998, 70, 1740-1749.	3.9	58