Shangfeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of interannual variation of the spring Somali Jet intensity on the northwest–southeast movement of the South Asian High in the following summer. Climate Dynamics, 2023, 60, 1583-1598.	3.8	4
2	Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from bias orrected <scp>CMIP6</scp> models. International Journal of Climatology, 2022, 42, 1203-1219.	3.5	14
3	Distinctive impact of spring AO on the succedent winter El Niño event: sensitivity to AO's North Pacific component. Climate Dynamics, 2022, 58, 235-255.	3.8	5
4	Change in the variability in the Western Pacific pattern during boreal winter: roles of tropical Pacific sea surface temperature anomalies and North Pacific storm track activity. Climate Dynamics, 2022, 58, 2451-2468.	3.8	9
5	Distinct Impacts of ENSO on Haze Pollution in the Beijing–Tianjin–Hebei Region between Early and Late Winters. Journal of Climate, 2022, 35, 687-704.	3.2	26
6	The Weakening Relationship between ENSO and the South China Sea Summer Monsoon Onset in Recent Decades. Advances in Atmospheric Sciences, 2022, 39, 443-455.	4.3	13
7	Interdecadal Modulation of the Pacific Decadal Oscillation on the Relationship Between Spring Arctic Oscillation and the Following Winter ENSO. Frontiers in Earth Science, 2022, 9, .	1.8	1
8	Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies. Atmospheric Chemistry and Physics, 2022, 22, 1669-1688.	4.9	5
9	Close Linkage of the South China Sea Summer Monsoon Onset and Extreme Rainfall in May over Southeast Asia: Role of the Synoptic-Scale Systems. Journal of Climate, 2022, 35, 4347-4362.	3.2	12
10	Enhanced Tropospheric Biennial Oscillation of the East Asian Summer Monsoon since the Late 1970s. Journal of Climate, 2022, 35, 1613-1628.	3.2	5
11	The Leading Mode and Factors for Coherent Variations among the Subsystems of Tropical Asian Summer Monsoon Onset. Journal of Climate, 2022, 35, 1597-1612.	3.2	15
12	Influence of the Quasiâ€Biennial Oscillation on the Spatial Structure of the Wintertime Arctic Oscillation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
13	Weakened influence of El Niño–Southern Oscillation on the zonal shift of the South Asian High after the early 1980s. International Journal of Climatology, 2022, 42, 7583-7597.	3.5	6
14	Distinct impacts of two types of South Asian high on the connection of the summer rainfall over India and north China. International Journal of Climatology, 2022, 42, 8056-8072.	3.5	6
15	Interannual Variations of Rainfall in Late Spring over Southwest China and Associated Sea Surface Temperature and Atmospheric Circulation Anomalies. Atmosphere, 2022, 13, 735.	2.3	3
16	Intraseasonal variation of the northeast Asian anomalous anticyclone and its impacts on PM _{2.5} pollution in the North China Plain in early winter. Atmospheric Chemistry and Physics, 2022, 22, 6507-6521.	4.9	7
17	Role of the internal atmospheric variability on the warming trends over Northeast Asia during 1970–2005. Theoretical and Applied Climatology, 2022, 149, 1317-1328.	2.8	4
18	The Relationship between the North Atlantic Oscillation and the Silk Road Pattern in Summer. Journal of Climate. 2022, 35, 3091-3102.	3.2	14

#	Article	IF	CITATIONS
19	Diverse influences of spring Arctic Oscillation on the following winter El Niño–Southern Oscillation in CMIP5 models. Climate Dynamics, 2021, 56, 275-297.	3.8	15
20	Water vapour transport changes associated with the interdecadal decrease in the summer rainfall over Northeast Asia around the lateâ€1990s. International Journal of Climatology, 2021, 41, E1469.	3.5	13
21	The dominant North Pacific atmospheric circulation patterns and their relations to Pacific SSTs: historical simulations and future projections in the IPCC AR6 models. Climate Dynamics, 2021, 56, 701-725.	3.8	25
22	Distinct impacts of two types of South Asian highs on East Asian summer rainfall. International Journal of Climatology, 2021, 41, E2718.	3.5	5
23	Impact of the March Arctic Oscillation on the South China Sea summer monsoon onset. International Journal of Climatology, 2021, 41, E3239.	3.5	19
24	Performance of the <scp>IPCC AR6</scp> models in simulating the relation of the western North Pacific subtropical high to the spring northern tropical Atlantic <scp>SST</scp> . International Journal of Climatology, 2021, 41, 2189-2208.	3.5	10
25	Weakened impact of autumn Arctic sea ice concentration change on the subsequent winter Siberian High variation around the lateâ€1990s. International Journal of Climatology, 2021, 41, E2700.	3.5	11
26	Northern poleward edge of regional Hadley cell over western Pacific during boreal winter: year-to-year variability, influence factors and associated winter climate anomalies. Climate Dynamics, 2021, 56, 3643-3664.	3.8	8
27	Sources of the internal variability-generated uncertainties in the projection of Northeast Asian summer precipitation. Climate Dynamics, 2021, 56, 1783-1797.	3.8	6
28	Projected Trends of Wintertime North American Surface Mean and Extreme Temperatures over the Next Half-century in Two Generations of Canadian Earth System Models. Atmosphere - Ocean, 2021, 59, 53-75.	1.6	2
29	Asymmetric impact of the boreal spring Pacific Meridional Mode on the following winter El <scp>Niñoâ€Southern</scp> Oscillation. International Journal of Climatology, 2021, 41, 3523-3538.	3.5	6
30	Discrepant effects of atmospheric adjustments in shaping the spatial pattern of SST anomalies between extreme and moderate El Niıos. Journal of Climate, 2021, , 1-42.	3.2	0
31	Roles of anthropogenic forcings in the observed trend of decreasing late-summer precipitation over the East Asian transitional climate zone. Scientific Reports, 2021, 11, 4935.	3.3	10
32	Uncertainty of central China summer precipitation and related natural internal variability under global warming of 1 to 3°C. International Journal of Climatology, 2021, 41, 6640-6653.	3.5	5
33	Influence of North Atlantic sea surface temperature anomalies on springtime surface air temperature variation over Eurasia in CMIP5 models. Climate Dynamics, 2021, 57, 2669-2686.	3.8	12
34	Interdecadal change in the relationship between boreal winter North Pacific Oscillation and Eastern Australian rainfall in the following autumn. Climate Dynamics, 2021, 57, 3265-3283.	3.8	3
35	ls there any improvement in simulation of wintertime Western Pacific teleconnection pattern and associated climate anomalies in CMIP6 comparing with CMIP5 models?. Journal of Climate, 2021, , 1-75.	3.2	7
36	Intermodel Spread in the Impact of the Springtime Pacific Meridional Mode on Followingâ€Winter ENSO Tied to Simulation of the ITCZ in CMIP5/CMIP6. Geophysical Research Letters, 2021, 48, e2021GL093945.	4.0	18

#	Article	lF	CITATIONS
37	Comparisons of the different definitions of the western Pacific pattern and associated winter climate anomalies in Eurasia and North America. International Journal of Climatology, 2021, 41, 2840-2859.	3.5	12
38	Mean states and future projections of precipitation over the monsoon transitional zone in China in CMIP5 and CMIP6 models. Climatic Change, 2021, 169, 1.	3.6	9
39	The Quantile-Matching Approach to Improving Radar Quantitative Precipitation Estimation in South China. Remote Sensing, 2021, 13, 4956.	4.0	1
40	Recent weakening of the linkage between the spring Arctic Oscillation and the following winter El Niño-Southern Oscillation. Climate Dynamics, 2020, 54, 53-67.	3.8	13
41	Projected changes in mid–highâ€latitude Eurasian climate during boreal spring in a 1.5 and 2°C warmer world. International Journal of Climatology, 2020, 40, 1851-1863.	3.5	3
42	Anomalous winter moisture transport associated with the recent surface warming over the Barents–Kara seas region since the midâ€2000s. International Journal of Climatology, 2020, 40, 2497-2505.	3.5	11
43	Statistical analysis of the impacts of intraâ€seasonal oscillations on the South China Sea summer monsoon withdrawal. International Journal of Climatology, 2020, 40, 1919-1927.	3.5	10
44	Combined impact of tropical centralâ€eastern Pacific and North Atlantic sea surface temperature on precipitation variation in monsoon transitional zone over China during August–September. International Journal of Climatology, 2020, 40, 1316-1327.	3.5	41
45	Influence of winter Arctic sea ice concentration change on the El Niño–Southern Oscillation in the following winter. Climate Dynamics, 2020, 54, 741-757.	3.8	28
46	Relationship between the South China Sea summer monsoon withdrawal and September–October rainfall over southern China. Climate Dynamics, 2020, 54, 713-726.	3.8	24
47	Temporal disparity of the atmospheric systems contributing to interannual variation of wintertime haze pollution in the North China Plain. International Journal of Climatology, 2020, 40, 128-144.	3.5	19
48	Strengthened Connection between Springtime North Atlantic Oscillation and North Atlantic Tripole SST Pattern since the Late 1980s. Journal of Climate, 2020, 33, 2007-2022.	3.2	30
49	Interdecadal change in the North Atlantic storm track during boreal summer around the mid-2000s: role of the atmospheric internal processes. Climate Dynamics, 2020, 55, 1929-1944.	3.8	6
50	Potential impact of atmospheric heating over East Europe on the zonal shift in the South Asian high: the role of the Silk Road teleconnection. Scientific Reports, 2020, 10, 6543.	3.3	23
51	Projection of winter NPO-following winter ENSO connection in a warming climate: uncertainty due to internal climate variability. Climatic Change, 2020, 162, 723-740.	3.6	10
52	The seasonal footprinting mechanism in large ensemble simulations of the second generation Canadian earth system model: uncertainty due to internal climate variability. Climate Dynamics, 2020, 55, 2523-2541.	3.8	9
53	The Record-Breaking High Temperature over Europe in June of 2019. Atmosphere, 2020, 11, 524.	2.3	11
54	Potential Impact of Preceding Aleutian Low Variation on El Niño–Southern Oscillation during the Following Winter. Journal of Climate, 2020, 33, 3061-3077.	3.2	32

#	Article	IF	CITATIONS
55	The role of internal variability in climate change projections of North American surface air temperature and temperature extremes in CanESM2 large ensemble simulations. Climate Dynamics, 2020, 55, 869-885.	3.8	19
56	Summer Water Vapor Sources in Northeast Asia and East Siberia Revealed by a Moisture-Tracing Atmospheric Model. Journal of Climate, 2020, 33, 3883-3899.	3.2	14
57	Interdecadal change in the impact of North Atlantic SST on August rainfall over the monsoon transitional belt in China around the late 1990s. Theoretical and Applied Climatology, 2020, 140, 503-516.	2.8	11
58	Coherent Interannual Variations of Springtime Surface Temperature and Temperature Extremes Between Centralâ€Northern Europe and Northeast Asia. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032226.	3.3	7
59	Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia. Climate Dynamics, 2020, 54, 5111-5126.	3.8	63
60	Intra-seasonal differences in the atmospheric systems contributing to interannual variations of autumn haze pollution in the North China Plain. Theoretical and Applied Climatology, 2020, 141, 389-403.	2.8	6
61	Extremely Early Summer Monsoon Onset in the South China Sea in 2019 Following an El Niño Event. Monthly Weather Review, 2020, 148, 1877-1890.	1.4	38
62	Impact of the September Silk Road Pattern on the South China Sea summer monsoon withdrawal. International Journal of Climatology, 2020, 40, 6361-6368.	3.5	12
63	The intensified impact of El Niño on late-summer precipitation over East Asia since the early 1990s. Climate Dynamics, 2020, 54, 4793-4809.	3.8	13
64	What Leads to Persisting Surface Air Temperature Anomalies from Winter to Following Spring over Mid- to High-Latitude Eurasia?. Journal of Climate, 2020, 33, 5861-5883.	3.2	29
65	Impacts of the Atlantic Multidecadal Oscillation on the Relationship of the Spring Arctic Oscillation and the Following East Asian Summer Monsoon. Journal of Climate, 2020, 33, 6651-6672.	3.2	10
66	Why Does a Colder (Warmer) Winter Tend to Be Followed by a Warmer (Cooler) Summer over Northeast Eurasia?. Journal of Climate, 2020, 33, 7255-7274.	3.2	14
67	Time-varying structure of the wintertime Eurasian pattern: role of the North Atlantic sea surface temperature and atmospheric mean flow. Climate Dynamics, 2019, 52, 2467-2479.	3.8	37
68	The leading interannual variability modes of winter surface air temperature over Southeast Asia. Climate Dynamics, 2019, 52, 4715-4734.	3.8	22
69	Interannual variability and triggers of the South China Sea summer monsoon withdrawal. Climate Dynamics, 2019, 53, 4355-4372.	3.8	14
70	Projections of climate changes over mid-high latitudes of Eurasia during boreal spring: uncertainty due to internal variability. Climate Dynamics, 2019, 53, 6309-6327.	3.8	18
71	Enhanced impact of Arctic sea ice change during boreal autumn on the following spring Arctic oscillation since the mid-1990s. Climate Dynamics, 2019, 53, 5607-5621.	3.8	22
72	Interdecadal Modulation of AMO on the Winter North Pacific Oscillation-Following Winter ENSO Relationship. Advances in Atmospheric Sciences, 2019, 36, 1393-1403.	4.3	13

#	Article	IF	CITATIONS
73	Recent Strengthened Impact of the Winter Arctic Oscillation on the Southeast Asian Surface Air Temperature Variation. Atmosphere, 2019, 10, 164.	2.3	17
74	Recent Strengthening of the Regional Hadley Circulation over the Western Pacific during Boreal Spring. Advances in Atmospheric Sciences, 2019, 36, 1251-1264.	4.3	17
75	Interâ€annual variations of precipitation over the monsoon transitional zone in China during August–September: Role of sea surface temperature anomalies over the tropical Pacific and North Atlantic. Atmospheric Science Letters, 2019, 20, e872.	1.9	17
76	Performance of the CMIP5 models in simulating the Arctic Oscillation during boreal spring. Climate Dynamics, 2019, 53, 2083-2101.	3.8	4
77	Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dynamics, 2019, 53, 2031-2046.	3.8	73
78	Interannual variability of surface air temperature over mid-high latitudes of Eurasia during boreal autumn. Climate Dynamics, 2019, 53, 1805-1821.	3.8	24
79	Interâ€annual variation of the spring haze pollution over the North China Plain: Roles of atmospheric circulation and sea surface temperature. International Journal of Climatology, 2019, 39, 783-798.	3.5	40
80	Interdecadal change in the South China Sea summer monsoon withdrawal around the mid-2000s. Climate Dynamics, 2019, 52, 6053-6064.	3.8	21
81	Present-day status and future projection of spring Eurasian surface air temperature in CMIP5 model simulations. Climate Dynamics, 2019, 52, 5431-5449.	3.8	14
82	Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2371-2386.	3.3	65
83	Enhanced Linkage between Eurasian Winter and Spring Dominant Modes of Atmospheric Interannual Variability since the Early 1990s. Journal of Climate, 2018, 31, 3575-3595.	3.2	25
84	Interannual Variability of Regional Hadley Circulation Intensity Over Western Pacific During Boreal Winter and Its Climatic Impact Over Asiaâ€Australia Region. Journal of Geophysical Research D: Atmospheres, 2018, 123, 344-366.	3.3	31
85	Impact of the Winter North Pacific Oscillation on the Surface Air Temperature over Eurasia and North America: Sensitivity to the Index Definition. Advances in Atmospheric Sciences, 2018, 35, 702-712.	4.3	15
86	Impacts of early autumn Arctic sea ice concentration on subsequent spring Eurasian surface air temperature variations. Climate Dynamics, 2018, 51, 2523-2542.	3.8	53
87	PDO modulation of the ENSO impact on the summer South Asian high. Climate Dynamics, 2018, 50, 1393-1411.	3.8	41
88	Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index. Climate Dynamics, 2018, 50, 375-389.	3.8	25
89	Intensified impact of North Atlantic Oscillation in May on subsequent July Asian inland plateau precipitation since the late 1970s. International Journal of Climatology, 2018, 38, 2605-2612.	3.5	14
90	A strengthened impact of November Arctic oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s. Climate Dynamics, 2018, 51, 511-529.	3.8	29

#	Article	IF	CITATIONS
91	A Review of Atmosphere–Ocean Forcings Outside the Tropical Pacific on the El Niño–Southern Oscillation Occurrence. Atmosphere, 2018, 9, 439.	2.3	21
92	Has the regional Hadley circulation over western Pacific during boreal winter been strengthening in recent decades?. Atmospheric and Oceanic Science Letters, 2018, 11, 454-463.	1.3	4
93	Combined Influence of the Arctic Oscillation and the Scandinavia Pattern on Spring Surface Air Temperature Variations Over Eurasia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9410-9429.	3.3	26
94	Modulation of spring northern tropical Atlantic sea surface temperature on the El Niñoâ€Southern Oscillation–East Asian summer monsoon connection. International Journal of Climatology, 2018, 38, 5020-5029.	3.5	41
95	Modulation of the relationship between spring AO and the subsequent winter ENSO by the preceding November AO. Scientific Reports, 2018, 8, 6943.	3.3	11
96	The influence of boreal spring Arctic Oscillation on the subsequent winter ENSO in CMIP5 models. Climate Dynamics, 2017, 48, 2949-2965.	3.8	27
97	Contrast of 10–20-day and 30–60-day intraseasonal SST propagation during summer and winter over the South China Sea and western North Pacific. Climate Dynamics, 2017, 48, 1233-1248.	3.8	18
98	Distinct impacts of two types of La Niña events on Australian summer rainfall. International Journal of Climatology, 2017, 37, 2532-2544.	3.5	30
99	Interdecadal Changes in the Relationship between Interannual Variations of Spring North Atlantic SST and Eurasian Surface Air Temperature. Journal of Climate, 2017, 30, 3771-3787.	3.2	63
100	Improvement of a snow albedo parameterization in the Snow–Atmosphere–Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover. Advances in Atmospheric Sciences, 2017, 34, 1333-1345.	4.3	8
101	An enhanced influence of sea surface temperature in the tropical northern Atlantic on the following winter ENSO since the early 1980s. Atmospheric and Oceanic Science Letters, 2017, 10, 175-182.	1.3	16
102	The climatology and interannual variability of the South Asia high and its relationship with ENSO in CMIP5 models. Climate Dynamics, 2017, 48, 3507-3528.	3.8	19
103	Analysis of euphotic depth in snow with SNICAR transfer scheme. Atmospheric Science Letters, 2017, 18, 484-490.	1.9	5
104	Infrared signatures modeling of rocket debris based on the remote detection. , 2017, , .		1
105	Micro-motion dynamic and geometric parameters estimation of exo-atmospheric infrared targets. , 2016, , .		Ο
106	Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015–2016 El Niño. Atmospheric Science Letters, 2016, 17, 384-391.	1.9	46
107	Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western North Pacific after the late 1980s. Advances in Atmospheric Sciences, 2016, 33, 919-930.	4.3	37
108	Regional change in snow water equivalent–surface air temperature relationship over Eurasia during boreal spring. Climate Dynamics, 2016, 47, 2425-2442.	3.8	41

#	Article	IF	CITATIONS
109	Dominant Modes of Interannual Variability in Eurasian Surface Air Temperature during Boreal Spring. Journal of Climate, 2016, 29, 1109-1125.	3.2	102
110	Covariations of SST and surface heat flux on 10–20 day and 30–60 day time scales over the South C Sea and western North Pacific. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12486-12499.	china 3.3	21
111	Modulation of the connection between boreal winter ENSO and the South Asian high in the following summer by the stratospheric quasiâ€biennial oscillation. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7393-7411.	3.3	39
112	A method of waveforms classification based on cascaded neural networks. , 2015, , .		3
113	On the weakened relationship between spring Arctic Oscillation and following summer tropical cyclone frequency over the western North Pacific: A comparison between 1968–1986 and 1989–2007. Advances in Atmospheric Sciences, 2015, 32, 1319-1328.	4.3	15
114	Line segment matching of space target image sequence based on optical flow prediction. , 2015, , .		1
115	Influence of the November Arctic Oscillation on the subsequent tropical Pacific sea surface temperature. International Journal of Climatology, 2015, 35, 4307-4317.	3.5	33
116	Classification of waveforms using unsupervised feature learning and artificial neural network. , 2015, , .		4
117	The Changing Relationship between Interannual Variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. Journal of Climate, 2015, 28, 485-504.	3.2	91
118	An Interdecadal Change in the Relationship between Boreal Spring Arctic Oscillation and the East Asian Summer Monsoon around the Early 1970s. Journal of Climate, 2015, 28, 1527-1542.	3.2	28
119	An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Climate Dynamics, 2015, 44, 1109-1126.	3.8	53
120	Asymmetric influence of boreal spring Arctic Oscillation on subsequent ENSO. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,135.	3.3	6
121	Vertical tilt structure of East Asian trough and its interannual variation mechanism in boreal winter. Theoretical and Applied Climatology, 2014, 115, 667-683.	2.8	13
122	An analysis on the physical process of the influence of AO on ENSO. Climate Dynamics, 2014, 42, 973-989.	3.8	140
123	Regional changes in the annual mean Hadley circulation in recent decades. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7815-7832.	3.3	68
124	Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO. Advances in Atmospheric Sciences, 2013, 30, 1712-1724.	4.3	81
125	Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation. Geophysical Research Letters, 2013, 40, 6384-6389.	4.0	49