
Yann Hautier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9263228/publications.pdf Version: 2024-02-01

YANN HALITIED

#	Article	IF	CITATIONS
1	Competition for Light Causes Plant Biodiversity Loss After Eutrophication. Science, 2009, 324, 636-638.	12.6	1,050
2	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	27.8	1,032
3	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
4	Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18, 85-95.	6.4	612
5	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564
6	Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 2015, 348, 336-340.	12.6	516
7	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	12.6	463
8	General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 2010, 91, 2213-2220.	3.2	410
9	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	27.8	409
10	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	9.3	403
11	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	27.8	355
12	Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.	7.8	296
13	Diverse pollinator communities enhance plant reproductive success. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4845-4852.	2.6	193
14	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
15	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.	4.0	169
16	Lifeâ€history constraints in grassland plant species: a growthâ€defence tradeâ€off is the norm. Ecology Letters, 2013, 16, 513-521.	6.4	165
17	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	3.2	143
18	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143

Yann Hautier

#	Article	IF	CITATIONS
19	Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. ELife, 2021, 10, .	6.0	100
20	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7.8	97
21	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	6.4	88
22	Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 2022, 25, 555-569.	6.4	85
23	Biodiversity–productivity relationships are key to nature-based climate solutions. Nature Climate Change, 2021, 11, 543-550.	18.8	77
24	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	12.8	75
25	Changes in reproductive investment with altitude in an alpine plant. Journal of Plant Ecology, 2009, 2, 125-134.	2.3	73
26	Food webs obscure the strength of plant diversity effects on primary productivity. Ecology Letters, 2017, 20, 505-512.	6.4	73
27	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
28	Modelling the growth of parasitic plants. Journal of Ecology, 2010, 98, 857-866.	4.0	62
29	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	3.2	62
30	BUGS in the Analysis of Biodiversity Experiments: Species Richness and Composition Are of Similar Importance for Grassland Productivity. PLoS ONE, 2011, 6, e17434.	2.5	62
31	Soil net nitrogen mineralisation across global grasslands. Nature Communications, 2019, 10, 4981.	12.8	57
32	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	3.6	55
33	Plant growth rates and seed size: a reâ€evaluation. Ecology, 2012, 93, 1283-1289.	3.2	54
34	Grazingâ€induced biodiversity loss impairs grassland ecosystem stability at multiple scales. Ecology Letters, 2021, 24, 2054-2064.	6.4	46
35	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	9.5	43
36	Climate and local environment structure asynchrony and the stability of primary production in grasslands. Global Ecology and Biogeography, 2020, 29, 1177-1188.	5.8	41

YANN HAUTIER

#	Article	IF	CITATIONS
37	Herbivores safeguard plant diversity by reducing variability in dominance. Journal of Ecology, 2018, 106, 101-112.	4.0	40
38	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
39	Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. Ecology Letters, 2018, 21, 1364-1371.	6.4	38
40	Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores. Oecologia, 2015, 179, 261-270.	2.0	37
41	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	3.4	34
42	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	5.8	32
43	Decoupled responses of above―and belowâ€ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 2022, 28, 2711-2720.	9.5	31
44	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	12.6	30
45	Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211396.	2.6	29
46	Effects of Seed Predators of Different Body Size on Seed Mortality in Bornean Logged Forest. PLoS ONE, 2010, 5, e11651.	2.5	28
47	Diverse marsh plant communities are more consistently productive across a range of different environmental conditions through functional complementarity. Journal of Applied Ecology, 2011, 48, 1117-1124.	4.0	26
48	Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Functional Ecology, 2020, 34, 2622-2633.	3.6	20
49	Effects of Dominance and Diversity on Productivity along Ellenberg's Experimental Water Table Gradients. PLoS ONE, 2012, 7, e43358.	2.5	19
50	The importance of competition for light depends on productivity and disturbance. Ecology and Evolution, 2018, 8, 10655-10661.	1.9	18
51	Nutrients and herbivores impact grassland stability across spatial scales through different pathways. Global Change Biology, 2022, 28, 2678-2688.	9.5	18
52	Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 2022, 25, 754-765.	6.4	17
53	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	16
54	Resourceâ€enhancing global changes drive a wholeâ€ecosystem shift to faster cycling but decrease diversity. Ecology, 2020, 101, e03178.	3.2	16

YANN HAUTIER

#	Article	IF	CITATIONS
55	Suppression of arbuscular mycorrhizal fungi decreases the temporal stability of community productivity under elevated temperature and nitrogen addition in a temperate meadow. Science of the Total Environment, 2021, 762, 143137.	8.0	16
56	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	3.2	14
57	Dominant native and nonâ€native graminoids differ in key leaf traits irrespective of nutrient availability. Global Ecology and Biogeography, 2020, 29, 1126-1138.	5.8	11
58	SRU _D : A simple nonâ€destructive method for accurate quantification of plant diversity dynamics. Journal of Ecology, 2019, 107, 2155-2166.	4.0	9
59	A landscapeâ€scale assessment of the relationship between grassland functioning, community diversity, and functional traits. Ecology and Evolution, 2020, 10, 9906-9919.	1.9	8
60	Grand challenges in biodiversity–ecosystem functioning research in the era of science–policy platforms require explicit consideration of feedbacks. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210783.	2.6	8
61	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	1.9	8
62	Fast and furious: Early differences in growth rate drive shortâ€ŧerm plant dominance and exclusion under eutrophication. Ecology and Evolution, 2020, 10, 10116-10129.	1.9	5
63	Functionally diverse tree stands reduce herbaceous diversity and productivity via canopy packing. Functional Ecology, 2022, 36, 950-961.	3.6	5
64	Intra―and interspecific variability of specific leaf area mitigate the reduction of community stability in response to warming and nitrogen addition. Oikos, 2022, 2022, .	2.7	5
65	Tree diversity depending on environmental gradients promotes biomass stability via species asynchrony in China's forest ecosystems. Ecological Indicators, 2022, 140, 109021.	6.3	5