Thomas Heinbockel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9262932/publications.pdf

Version: 2024-02-01

279798 276875 1,939 61 23 41 citations h-index g-index papers 68 68 68 2450 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Endocannabinoidâ€mediated neuromodulation in the main olfactory bulb at the interface of environmental stimuli and central neural processing. European Journal of Neuroscience, 2022, 55, 1002-1014.	2.6	3
2	Orchestration of the circadian clock and its association with Alzheimer's disease: Role of endocannabinoid signaling. Ageing Research Reviews, 2022, 73, 101533.	10.9	8
3	Cannabinoid Receptorâ€Mediated Synaptic Signaling and Neural Plasticity in Central Olfactory Neurons. FASEB Journal, 2022, 36, .	0.5	O
4	Chemical Constituents of Essential Oils Used in Olfactory Training: Focus on COVID-19 Induced Olfactory Dysfunction. Frontiers in Pharmacology, 2022, 13, .	3.5	4
5	The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders. International Journal of Environmental Research and Public Health, 2021, 18, 6976.	2.6	17
6	Cannabinoids Regulate Sensory Processing in Early Olfactory and Visual Neural Circuits. Frontiers in Neural Circuits, $2021,15,662349.$	2.8	7
7	Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. International Journal of Molecular Sciences, 2021, 22, 8912.	4.1	32
8	Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .	2.0	119
9	More Than Smellâ€"COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chemical Senses, 2020, 45, 609-622.	2.0	375
10	The Effects of Essential Oils and Terpenes in Relation to Their Routes of Intake and Application. International Journal of Molecular Sciences, 2020, 21, 1558.	4.1	50
11	Endocannabinoid-Mediated Neuromodulation in the Olfactory Bulb: Functional and Therapeutic Significance. International Journal of Molecular Sciences, 2020, 21, 2850.	4.1	11
12	Introductory Chapter: Histological Microtechniques. , 2019, , .		2
13	Cannabinoid receptor-mediated modulation of inhibitory inputs to mitral cells in the main olfactory bulb. Journal of Neurophysiology, 2019, 122, 749-759.	1.8	11
14	Introductory Chapter: The Chemical Basis of Neural Function and Dysfunction. , 2019, , .		2
15	Understanding the olfactory system. , 2019, , 18-21.		O
16	Neurochemical Basis of Brain Function and Dysfunction. , 2019, , .		0
17	The Effects of Quinine on Neurophysiological Properties of Dopaminergic Neurons. Neurotoxicity Research, 2018, 34, 62-73.	2.7	16
18	Introductory Chapter: Organization and Function of Sensory Nervous Systems., 2018,,.		2

#	Article	IF	Citations
19	6 Hz Active Anticonvulsant Fluorinated N-Benzamide Enaminones and Their Inhibitory Neuronal Activity. International Journal of Environmental Research and Public Health, 2018, 15, 1784.	2.6	10
20	Epigenetic Effects of Drugs of Abuse. International Journal of Environmental Research and Public Health, 2018, 15, 2098.	2.6	14
21	Neuromodulation of Synaptic Transmission in the Main Olfactory Bulb. International Journal of Environmental Research and Public Health, 2018, 15, 2194.	2.6	29
22	Protective Effects of Donepezil Against Alcohol-Induced Toxicity in Cell Culture: Role of Caspase-3. Neurotoxicity Research, 2018, 34, 757-762.	2.7	17
23	Essential Oils and Their Constituents Targeting the GABAergic System and Sodium Channels as Treatment of Neurological Diseases. Molecules, 2018, 23, 1061.	3.8	60
24	The Effect of Citalopram on Genome-Wide DNA Methylation of Human Cells. International Journal of Genomics, 2018, 2018, 1-12.	1.6	13
25	Cellular Mechanisms of Action of Drug Abuse on Olfactory Neurons. International Journal of Environmental Research and Public Health, 2016, 13, 5.	2.6	9
26	Endocannabinoid Signaling in Neural Circuits of the Olfactory and Limbic System., 2016,,.		1
27	Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions. Acta Pharmacologica Sinica, 2015, 36, 791-799.	6.1	35
28	Resibufogenin and Cinobufagin Activate Central Neurons through an Ouabain-Like Action. PLoS ONE, 2014, 9, e113272.	2.5	22
29	Identification of both GABAA receptors and voltage-activated Na+ channels as molecular targets of anticonvulsant α-asarone. Frontiers in Pharmacology, 2014, 5, 40.	3.5	29
30	Neurochemical Communication: The Case of Endocannabinoids. , 2014, , .		3
31	Allosteric Modulation of GABAA Receptors by an Anilino Enaminone in an Olfactory Center of the Mouse Brain. Pharmaceuticals, 2014, 7, 1069-1090.	3.8	13
32	Glomerular interactions in olfactory processing channels of the antennal lobes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 929-946.	1.6	10
33	Astrocyte fatty acid binding protein-7 is a marker for neurogenic niches in the rat hippocampus. Hippocampus, 2013, 23, 1476-1483.	1.9	23
34	The basal forebrain modulates spontaneous activity of principal cells in the main olfactory bulb of anesthetized mice. Frontiers in Neural Circuits, 2013, 7, 148.	2.8	22
35	Cannabinoid Receptor-Mediated Regulation of Neuronal Activity and Signaling in Glomeruli of the Main Olfactory Bulb. Journal of Neuroscience, 2012, 32, 8475-8479.	3.6	36
36	Ginseng derivative ocotillol enhances neuronal activity through increased glutamate release: a possible mechanism underlying increased spontaneous locomotor activity of mice. Neuroscience, 2011, 195, 1-8.	2.3	37

3

#	Article	IF	Citations
37	A Substituted Anilino Enaminone Acts as a Novel Positive Allosteric Modulator of GABA _A Receptors in the Mouse Brain. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 916-924.	2.5	21
38	Metabotropic Glutamate Receptors and Dendrodendritic Synapses in the Main Olfactory Bulb. Annals of the New York Academy of Sciences, 2009, 1170, 224-238.	3.8	9
39	Inhibitory Interactions Among Olfactory Glomeruli Do Not Necessarily Reflect Spatial Proximity. Journal of Neurophysiology, 2008, 100, 554-564.	1.8	27
40	Group I Metabotropic Glutamate Receptors Are Differentially Expressed by Two Populations of Olfactory Bulb Granule Cells. Journal of Neurophysiology, 2007, 97, 3136-3141.	1.8	12
41	Metabotropic Glutamate Receptors in the Main Olfactory Bulb Drive Granule Cell-Mediated Inhibition. Journal of Neurophysiology, 2007, 97, 858-870.	1.8	33
42	Explaining the structure and function of nerve cells to elementary school children at Brains Rule! neurosciences expositions. FASEB Journal, 2007, 21, A219.	0.5	0
43	Lepidoptera, Moths and Butterflies, Volume 2: Morphology, Physiology, and Development Handbook of Zoology: A Natural History of the Phyla of the Animal Kingdom Volume IV Arthropoda: Insecta, Part 36. Annals of the Entomological Society of America, 2006, 99, 988-989.	2.5	0
44	Olfactory Nerve–Evoked, Metabotropic Glutamate Receptor–Mediated Synaptic Responses in Rat Olfactory Bulb Mitral Cells. Journal of Neurophysiology, 2006, 95, 2233-2241.	1.8	28
45	Endocannabinoid Signaling Dynamics Probed with Optical Tools. Journal of Neuroscience, 2005, 25, 9449-9459.	3.6	60
46	Properties of external plexiform layer interneurons in mouse olfactory bulb slices. Neuroscience, 2005, 133, 819-829.	2.3	51
47	Representation of binary pheromone blends by glomerulus-specific olfactory projection neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 1023-1037.	1.6	39
48	Regulation of Main Olfactory Bulb Mitral Cell Excitability by Metabotropic Glutamate Receptor mGluR1. Journal of Neurophysiology, 2004, 92, 3085-3096.	1.8	58
49	Direct Excitation of Mitral Cells Via Activation of $\hat{l}\pm 1$ -Noradrenergic Receptors in Rat Olfactory Bulb Slices. Journal of Neurophysiology, 2001, 86, 2173-2182.	1.8	73
50	Cellular processes in the amygdala: gates to emotional memory?. Zoology, 2001, 104, 232-240.	1.2	6
51	Synaptic mechanisms of NMDA-mediated hyperpolarization in lateral amygdaloid projection neurons. NeuroReport, 2000, 11, 2501-2506.	1.2	8
52	Input-Specific Long-Term Depression in the Lateral Amygdala Evoked by Theta Frequency Stimulation. Journal of Neuroscience, 2000, 20, RC68-RC68.	3.6	60
53	Putative Cortical and Thalamic Inputs Elicit Convergent Excitation in a Population of GABAergic Interneurons of the Lateral Amygdala. Journal of Neuroscience, 2000, 20, 8909-8915.	3.6	105
54	Modulatory effects of adenosine on inhibitory postsynaptic potentials in the lateral amygdala of the rat. British Journal of Pharmacology, 1999, 128, 190-196.	5.4	13

#	Article	IF	Citations
55	Temporal tuning of odor responses in pheromone-responsive projection neurons in the brain of the sphinx mothManduca sexta. Journal of Comparative Neurology, 1999, 409, 1-12.	1.6	55
56	Pheromone-evoked potentials and oscillations in the antennal lobes of the sphinx moth Manduca sexta. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 182, 703-714.	1.6	50
57	Antennal receptive fields of pheromone-responsive projection neurons in the antennal lobes of the male sphinx moth Manduca sexta. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 183, 121-133.	1.6	19
58	Variability of olfactory receptor neuron responses of female silkmoths (Bombyx mori L.) to benzoic acid and $(\hat{A}\pm)$ -linalool. Journal of Insect Physiology, 1996, 42, 565-578.	2.0	56
59	Olfactory information processing in the brain: Encoding chemical and temporal features of odors. , 1996, 30, 82-91.		71
60	Introductory Chapter: Mechanisms and Function of Synaptic Plasticity. , 0, , .		4
61	Neurological and Neuropsychiatric Disorders in Relation to Olfactory Dysfunction. , 0, , .		1