
Giuseppe Graziano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/926280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Rationalization of the Effect That TMAO, Glycine, and Betaine Exert on the Collapse of Elastin-like Polypeptides. Life, 2022, 12, 140.	2.4	1
2	A simple model of protein cold denaturation. Chemical Physics Letters, 2022, 794, 139504.	2.6	1
3	A Protein Data Bank survey of multimodal binding of thiocyanate to proteins: Evidence for thiocyanate promiscuity. International Journal of Biological Macromolecules, 2022, 208, 29-36.	7.5	5
4	Some Clues about Enzymes from Psychrophilic Microorganisms. Microorganisms, 2022, 10, 1161.	3.6	3
5	The magnitude of macromolecular crowding caused by Dextran and Ficoll for the conformational stability of globular proteins. Journal of Molecular Liquids, 2021, 322, 114969.	4.9	6
6	N-methylacetamide is a solvent better than water for amino acid side chains: A rationalization grounded in the solvent-excluded volume effect. Chemical Physics Letters, 2021, 762, 138160.	2.6	2
7	Comment on "The Gibbs free energy of cavity formation in a diverse set of solventsâ€{J. Chem. Phys. 153, 134501 (2020)]. Journal of Chemical Physics, 2021, 154, 187101.	3.0	2
8	General Counteraction Exerted by Sugars against Denaturants. Life, 2021, 11, 652.	2.4	5
9	Effect of sodium thiocyanate and sodium perchlorate on poly(N-isopropylacrylamide) collapse. Physical Chemistry Chemical Physics, 2020, 22, 189-195.	2.8	9
10	Guanidinium binding to proteins: The intriguing effects on the D1 and D2 domains of Thermotoga maritima Arginine Binding Protein and a comprehensive analysis of the Protein Data Bank. International Journal of Biological Macromolecules, 2020, 163, 375-385.	7.5	6
11	ls water a good solvent for the denatured state of globular proteins?. Chemical Physics Letters, 2020, 759, 137949.	2.6	3
12	On the extraordinary pressure stability of the <i>Thermotoga maritima</i> arginine binding protein and its folded fragments – a high-pressure FTIR spectroscopy study. Physical Chemistry Chemical Physics, 2020, 22, 11244-11248.	2.8	2
13	Shape effect on non-covalent dimer stability using classic scaled particle theory. Chemical Physics Letters, 2020, 743, 137176.	2.6	6
14	Why small proteins tend to have high denaturation temperatures. Physical Chemistry Chemical Physics, 2020, 22, 16258-16266.	2.8	6
15	Hydrophobic hydration and pairwise hydrophobic interaction of Lennard-Jones and Mie particles in different water models. Physical Chemistry Chemical Physics, 2020, 22, 4758-4771.	2.8	4
16	Can the roles of polar and non-polar moieties be reversed in non-polar solvents?. Physical Chemistry Chemical Physics, 2020, 22, 25848-25858.	2.8	9
17	Contrasting the hydration thermodynamics of methane and methanol. Physical Chemistry Chemical Physics, 2019, 21, 21418-21430.	2.8	30
18	On the opposite effect of guanidinium chloride and guanidinium sulphate on the kinetics of the Diels-Alder reaction. Journal of Molecular Liquids, 2019, 275, 100-104.	4.9	3

#	Article	IF	CITATIONS
19	The characterization of Thermotoga maritima Arginine Binding Protein variants demonstrates that minimal local strains have an important impact on protein stability. Scientific Reports, 2019, 9, 6617.	3.3	9
20	Why does urea have a different effect on the collapse temperature of PDEAM and PNIPAM?. Journal of Molecular Liquids, 2019, 285, 204-212.	4.9	8
21	On the cononsolvency behaviour of hydrophobic clusters in water–methanol solutions. Physical Chemistry Chemical Physics, 2018, 20, 7230-7235.	2.8	5
22	Counteraction ability of TMAO toward different denaturing agents. Biopolymers, 2018, 109, e23104.	2.4	18
23	Comment on "On the positional and orientational order of water and methanol around indole: a study on the microscopic origin of solubility―Phys. Chem. Chem. Phys., 2016, 18, 23006. Physical Chemistry Chemical Physics, 2018, 20, 2113-2115.	2.8	1
24	Comment on "Thermal compaction of the intrinsically disordered protein tau: entropic, structural, and hydrophobic factors―by A. Battisti, G. Ciasca, A. Grottesi and A. Tenenbaum, <i>Phys. Chem. Chem. Phys.</i> , 2017, 19 , 8435. Physical Chemistry Chemical Physics, 2018, 20, 690-693.	2.8	6
25	Effect of heavy water on the conformational stability of globular proteins. Biopolymers, 2018, 109, e23076.	2.4	8
26	Counteraction of denaturant-induced protein unfolding is a general property of stabilizing agents. Physical Chemistry Chemical Physics, 2018, 20, 29389-29398.	2.8	22
27	On the ability of classic scaled particle theory to reproduce the cavity contact correlation function of water over a large hydrostatic pressure range. Journal of Molecular Liquids, 2018, 263, 243-246.	4.9	1
28	Water and cold denaturation of small globular proteins. Journal of Molecular Liquids, 2018, 264, 579-584.	4.9	9
29	Domain communication in Thermotoga maritima Arginine Binding Protein unraveled through protein dissection. International Journal of Biological Macromolecules, 2018, 119, 758-769.	7.5	5
30	A reassessment of entropy convergence in solvation thermodynamics. Journal of Molecular Liquids, 2018, 269, 119-125.	4.9	6
31	Probability of cavity creation in water and corresponding Lennard-Jones liquid. Journal of Molecular Liquids, 2017, 229, 358-361.	4.9	1
32	Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions. Biophysical Chemistry, 2017, 231, 34-38.	2.8	8
33	A driving force for polypeptide and protein collapse. Physical Chemistry Chemical Physics, 2017, 19, 751-756.	2.8	22
34	Comment on "Relating side chain organization of PNIPAm with its conformation in aqueous methanol―by D. Mukherji, M. Wagner, M. D. Watson, S. Winzen, T. E. de Oliveira, C. M. Marques and K. Kremer, Soft Matter, 2016, 12, 7995. Soft Matter, 2017, 13, 7698-7700.	2.7	3
35	Why does TMAO stabilize the globule state of PNIPAM?. Polymer, 2017, 124, 101-106.	3.8	7
36	Energetics of the contact minimum configuration of two hard spheres in water. Chemical Physics Letters, 2017, 685, 54-59.	2.6	9

#	Article	IF	CITATIONS
37	On the solubility of oxygen and xenon in n-hexane and n-perfluorohexane at room temperature. Journal of Thermal Analysis and Calorimetry, 2017, 130, 497-501.	3.6	4
38	Proline 235 plays a key role in the regulation of the oligomeric states of Thermotoga maritima Arginine Binding Protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 814-824.	2.3	13
39	On urea's ability to stabilize the globule state of poly(N-isopropylacrylamide). Physical Chemistry Chemical Physics, 2016, 18, 14426-14433.	2.8	24
40	Shedding light on the extra thermal stability of thermophilic proteins. Biopolymers, 2016, 105, 856-863.	2.4	33
41	An alternative explanation of the cononsolvency of poly(N-isopropylacrylamide) in water–methanol solutions. Physical Chemistry Chemical Physics, 2016, 18, 25601-25608.	2.8	63
42	Temperature Dependence of the Pairwise Association of Hard Spheres in Water. Journal of the Physical Society of Japan, 2016, 85, 024801.	1.6	7
43	Shedding light on the hydrophobicity puzzle. Pure and Applied Chemistry, 2016, 88, 177-188.	1.9	24
44	On the effect of hydrostatic pressure on the conformational stability of globular proteins. Biopolymers, 2015, 103, 711-718.	2.4	8
45	On the effect of sodium salts on the coil-to-globule transition of poly(N-isopropylacrylamide). Physical Chemistry Chemical Physics, 2015, 17, 27750-27757.	2.8	39
46	The Gibbs energy cost of cavity creation depends on geometry. Journal of Molecular Liquids, 2015, 211, 1047-1051.	4.9	35
47	On the Effect of Sodium Chloride and Sodium Sulfate on Cold Denaturation. PLoS ONE, 2015, 10, e0133550.	2.5	4
48	Why Do Tetrapropylammonium Chloride and Sulphate Salts Destabilize the Native State of Globular Proteins?. Scientific World Journal, The, 2014, 2014, 1-4.	2.1	0
49	Hydrostatic pressure effect on hydrophobic hydration and pairwise hydrophobic interaction of methane. Journal of Chemical Physics, 2014, 140, 094503.	3.0	16
50	Molecular bases of protein halotolerance. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 850-858.	2.3	105
51	Mechanism of 3 <scp>D</scp> domain swapping in bovine seminal ribonuclease. FEBS Journal, 2014, 281, 842-850.	4.7	7
52	Pairwise association of neopentane as a function of hydrostatic pressure. Chemical Physics Letters, 2014, 616-617, 44-48.	2.6	2
53	On the mechanism of cold denaturation. Physical Chemistry Chemical Physics, 2014, 16, 21755-21767.	2.8	71
54	An alternative explanation for the collapse of unfolded proteins in an aqueous mixture of urea and guanidinium chloride. Chemical Physics Letters, 2014, 612, 313-317.	2.6	3

#	Article	IF	CITATIONS
55	Comment on "Water's Structure around Hydrophobic Solutes and the Iceberg Model― Journal of Physical Chemistry B, 2014, 118, 2598-2599.	2.6	40
56	A view on the dogma of hydrophobic imperialism in protein folding. Journal of Biomolecular Structure and Dynamics, 2013, 31, 1016-1019.	3.5	4
57	A theoretical study on the spectral and electrochemical properties of Ferrocene in different solvents. Inorganica Chimica Acta, 2013, 407, 82-90.	2.4	4
58	Reply to the comment by Setny, Baron and McCammon on the article "Molecular driving forces of the pocket-ligand hydrophobic associationâ€; Chem. Phys. Lett. 533 (2012) 95. Chemical Physics Letters, 2013, 555, 310-311.	2.6	2
59	Comment on "The application of the thermodynamic perturbation theory to study the hydrophobic hydration―[J. Chem. Phys. 139, 024101 (2013)]. Journal of Chemical Physics, 2013, 139, 127101.	3.0	2
60	On the ability of trehalose to offset the denaturing activity of urea. Chemical Physics Letters, 2013, 556, 292-296.	2.6	6
61	On the magnitude of border thickness in the partial molar volume of cavities in water. Chemical Physics Letters, 2013, 570, 46-49.	2.6	8
62	On the signature of the hydrophobic effect at a single molecule level. Physical Chemistry Chemical Physics, 2013, 15, 7389.	2.8	2
63	Effect of NaCl on the conformational stability of the thermophilic γ-glutamyltranspeptidase from Geobacillus thermodenitrificans: Implication for globular protein halotolerance. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 149-157.	2.3	21
64	Thermal and Chemical Stability of Two Homologous POZ/BTB Domains of KCTD Proteins Characterized by a Different Oligomeric Organization. BioMed Research International, 2013, 2013, 1-8.	1.9	13
65	On the effect of low concentrations of alcohols on the conformational stability of globular proteins. Physical Chemistry Chemical Physics, 2012, 14, 2769.	2.8	6
66	How does sucrose stabilize the native state of globular proteins?. International Journal of Biological Macromolecules, 2012, 50, 230-235.	7.5	32
67	Exploring the unfolding mechanism of γ-glutamyltranspeptidases: The case of the thermophilic enzyme from Geobacillus thermodenitrificans. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 571-577.	2.3	17
68	On the effect of trimethylamine N-oxide on the conformational equilibrium of the chaperone Hsp90. Chemical Physics Letters, 2012, 546, 141-143.	2.6	1
69	A rationale for the contrasting activity (towards globular proteins) of tert-butyl alcohol and trimethylamine N-oxide. Physical Chemistry Chemical Physics, 2012, 14, 13088.	2.8	16
70	Molecular driving forces of the pocket–ligand hydrophobic association. Chemical Physics Letters, 2012, 533, 95-99.	2.6	16
71	Contrasting the denaturing effect of guanidinium chloride with the stabilizing effect of guanidinium sulfate. Physical Chemistry Chemical Physics, 2011, 13, 12008.	2.8	52
72	How does trimethylamine N-oxide counteract the denaturing activity of urea?. Physical Chemistry Chemical Physics, 2011, 13, 17689.	2.8	55

#	Article	IF	CITATIONS
73	Molecular dynamics study of the conformational stability of esterase 2 from Alicyclobacillus acidocaldarius. International Journal of Biological Macromolecules, 2011, 49, 1072-1077.	7.5	5
74	On the solubility of long n-alkanes in water at room temperature. Chemical Physics Letters, 2011, 511, 262-265.	2.6	8
75	Solvation and pairwise association in a 2D fluid. Journal of Thermal Analysis and Calorimetry, 2011, 103, 1125-1130.	3.6	1
76	Cold unfolding of βâ€hairpins: A molecularâ€level rationalization. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1739-1746.	2.6	13
77	Role of solvent accessible surface area in the conformational equilibrium of n-butane in liquids. Chemical Physics Letters, 2011, 502, 180-183.	2.6	5
78	On the salting in effect of tetraalkylammonium bromides. Chemical Physics Letters, 2011, 505, 26-30.	2.6	8
79	On the partitioning of benzene between water and n-alkanes. Chemical Physics Letters, 2010, 486, 44-47.	2.6	3
80	Dimerisation and structural integrity of Heparin Binding Hemagglutinin A from <i>Mycobacterium tuberculosis</i> : Implications for bacterial agglutination. FEBS Letters, 2010, 584, 1091-1096.	2.8	16
81	Cold denaturation in the Schellman–Brandts model of globular proteins. Chemical Physics Letters, 2010, 486, 65-69.	2.6	7
82	Hydrophobic interaction of two large plates: An analysis of salting-in/salting-out effects. Chemical Physics Letters, 2010, 491, 54-58.	2.6	18
83	Significance of the Tolman length at a molecular level. Chemical Physics Letters, 2010, 497, 33-36.	2.6	22
84	On the pairwise hydrophobic interaction of fullerene. Chemical Physics Letters, 2010, 499, 79-82.	2.6	26
85	Comment on "The hydrophobic effect and its role in cold denaturation―Cryobiology 60 (2010) 91–99. Cryobiology, 2010, 60, 354-355.	0.7	5
86	On the molecular origin of cold denaturation of globular proteins. Physical Chemistry Chemical Physics, 2010, 12, 14245.	2.8	70
87	Role of hydrophobic effect in the saltâ€induced dimerization of bovine βâ€lactoglobulin at pH 3. Biopolymers, 2009, 91, 1182-1188.	2.4	4
88	Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles, 2009, 13, 461-470.	2.3	60
89	Hydration entropy of polar, nonpolar and charged species. Chemical Physics Letters, 2009, 479, 56-59.	2.6	31
90	Role of salts on the strength of pairwise hydrophobic interaction. Chemical Physics Letters, 2009, 483, 67-71.	2.6	26

#	Article	IF	CITATIONS
91	On the Salting Out of Benzene by Alkali Chlorides. Journal of Chemical & Engineering Data, 2009, 54, 464-467.	1.9	21
92	Dimerization Thermodynamics of Large Hydrophobic Plates: A Scaled Particle Theory Study. Journal of Physical Chemistry B, 2009, 113, 11232-11239.	2.6	66
93	Conformational Stability of Esterase Enzymes from Different Sources. Protein and Peptide Letters, 2009, 16, 1201-1206.	0.9	1
94	Water's surface tension and cavity thermodynamics. Journal of Thermal Analysis and Calorimetry, 2008, 91, 73-77.	3.6	8
95	On the cooperativity of the thermal denaturation of mini-proteins. Journal of Thermal Analysis and Calorimetry, 2008, 91, 57-60.	3.6	2
96	Domains in bovine seminal ribonuclease. Journal of Thermal Analysis and Calorimetry, 2008, 91, 61-66.	3.6	1
97	Is there a relationship between protein thermal stability and the denaturation heat capacity change?. Journal of Thermal Analysis and Calorimetry, 2008, 93, 429-438.	3.6	10
98	Conformational stability and DNA binding energetics of the rat thyroid transcription factor 1 homeodomain. Proteins: Structure, Function and Bioinformatics, 2008, 70, 748-760.	2.6	7
99	Stability against temperature of Sulfolobus solfataricus elongation factor 1α, a multi-domain protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 573-581.	2.3	11
100	Hydrophobicity in modified water models. Chemical Physics Letters, 2008, 452, 259-263.	2.6	11
101	Hard sphere study of condensation entropy. Chemical Physics Letters, 2008, 459, 105-108.	2.6	3
102	On the superhydrophobicity of tetrafluoromethane. Chemical Physics Letters, 2008, 460, 470-473.	2.6	10
103	On the cold denaturation of globular proteins. Chemical Physics Letters, 2008, 467, 150-153.	2.6	17
104	Salting out of methane by sodium chloride: A scaled particle theory study. Journal of Chemical Physics, 2008, 129, 084506.	3.0	65
105	Cavity size distribution in the interior of globular proteins. Chemical Physics Letters, 2007, 434, 316-319.	2.6	14
106	A purely geometric derivation of the scaled particle theory formula for the work of cavity creation in a liquid. Chemical Physics Letters, 2007, 440, 221-223.	2.6	41
107	Cavity thermodynamics and surface tension of water. Chemical Physics Letters, 2007, 442, 307-310.	2.6	10
108	Cavity thermodynamics in the Gaussian model of particle density fluctuations. Chemical Physics Letters, 2007, 446, 313-316.	2.6	10

#	Article	IF	CITATIONS
109	Solvation thermodynamics of methane and ethane in dimethyl sulfoxide and acetone versus water. Chemical Physics Letters, 2007, 449, 120-125.	2.6	4
110	Role of the N-terminal region for the conformational stability of esterase 2 from Alicyclobacillus acidocaldarius. Biophysical Chemistry, 2007, 127, 113-122.	2.8	16
111	Partial molar volume of n-alcohols at infinite dilution in water calculated by means of scaled particle theory. Journal of Chemical Physics, 2006, 124, 134507.	3.0	17
112	Chemical Denaturation of the Elongation Factor 1α Isolated from the Hyperthermophilic ArchaeonSulfolobus solfataricusâ€. Biochemistry, 2006, 45, 719-726.	2.5	13
113	Scaled Particle Theory Study of the Length Scale Dependence of Cavity Thermodynamics in Different Liquids. Journal of Physical Chemistry B, 2006, 110, 11421-11426.	2.6	95
114	Comment on "Phenomenological similarities between protein denaturation and small-molecule dissolution: Insights into the mechanism driving the thermal resistance of globular proteins― (Proteins 2004;54:323-332). Proteins: Structure, Function and Bioinformatics, 2006, 64, 789-791.	2.6	3
115	Benzene solubility in water: A reassessment. Chemical Physics Letters, 2006, 429, 114-118.	2.6	62
116	Non-intrinsic contribution to the partial molar volume of cavities in water. Chemical Physics Letters, 2006, 429, 420-424.	2.6	19
117	Cavity contact correlation function of water from scaled particle theory. Chemical Physics Letters, 2006, 432, 84-87.	2.6	18
118	Temperature-induced denaturation of Aes acetyl-esterase from Escherichia coli. Thermochimica Acta, 2006, 441, 144-149.	2.7	4
119	Comment on "Global thermodynamics of hydrophobic cavitation, dewetting, and hydration―[J. Chem. Phys. 123, 184504 (2005)]. Journal of Chemical Physics, 2006, 125, 037101.	3.0	2
120	On the thermal stability of the two dimeric forms of ribonuclease A. Biophysical Chemistry, 2005, 116, 89-95.	2.8	15
121	On the hydration heat capacity change of benzene. Biophysical Chemistry, 2005, 116, 137-144.	2.8	9
122	Sâ€adenosylhomocysteine hydrolase from the archaeon <i>Pyrococcus furiosus</i> : Biochemical characterization and analysis of protein structure by comparative molecular modeling. Proteins: Structure, Function and Bioinformatics, 2005, 58, 815-825.	2.6	13
123	Comment on "Hydrophobic effects on partial molar volume―[J. Chem. Phys. 122, 094509 (2005)]. Journal of Chemical Physics, 2005, 123, 167103.	3.0	7
124	Comment on "Entropy/enthalpy compensation: hydrophobic effect, micelles and protein complexes―by E. Fisicaro, C. Compari and A. Braibanti, Phys. Chem. Chem. Phys., 2004, 6, 4156. Physical Chemistry Chemical Physics, 2005, 7, 1322-1323.	2.8	6
125	Entropy Convergence in the Hydration Thermodynamics of n-Alcohols. Journal of Physical Chemistry B, 2005, 109, 12160-12166.	2.6	36
126	Comment on "Free Energy of Transfer of a Solute and Its Relation to the Partition Constant― Journal of Physical Chemistry B, 2005, 109, 17768-17769.	2.6	3

#	Article	IF	CITATIONS
127	On the Intactness of Hydrogen Bonds around Nonpolar Solutes Dissolved in Water. Journal of Physical Chemistry B, 2005, 109, 8103-8107.	2.6	46
128	Solvation Thermodynamics of Water in Nonpolar Organic Solvents Indicate the Occurrence of Nontraditional Hydrogen Bonds. Journal of Physical Chemistry B, 2005, 109, 981-985.	2.6	11
129	On the heat-capacity change of pairwise hydrophobic interactions. Journal of Chemical Physics, 2005, 123, 034509.	3.0	11
130	Relationship between cohesive energy density and hydrophobicity. Journal of Chemical Physics, 2004, 121, 1878-1882.	3.0	48
131	Case study of enthalpy–entropy noncompensation. Journal of Chemical Physics, 2004, 120, 4467-4471.	3.0	31
132	Structural and dynamic effects of \hat{I}_{\pm} -Helix deletion in Sso7d: Implications for protein thermal stability. Proteins: Structure, Function and Bioinformatics, 2004, 57, 692-701.	2.6	24
133	Rate enhancement of Diels–Alder reactions in aqueous solutions. Journal of Physical Organic Chemistry, 2004, 17, 100-101.	1.9	20
134	Water: cavity size distribution and hydrogen bonds. Chemical Physics Letters, 2004, 396, 226-231.	2.6	70
135	Aliphatics vs. aromatics hydration thermodynamics. Biophysical Chemistry, 2004, 110, 249-258.	2.8	16
136	Comment on "The hydrophobic effect―by B. Widom, P. Bhimalapuram and K. Koga, Phys. Chem. Chem. Phys., 2003,5, 3085. Physical Chemistry Chemical Physics, 2004, 6, 4527-4528.	2.8	4
137	Denaturant-Induced Unfolding of the Acetyl-Esterase from Escherichia coli. Biochemistry, 2004, 43, 14637-14643.	2.5	9
138	A van der Waals approach to the entropy convergence phenomenon. Physical Chemistry Chemical Physics, 2004, 6, 406.	2.8	8
139	Comment on "Do Molecules as Small as Neopentane Induce a Hydrophobic Response Similar to That of Large Hydrophobic Surfaces?― Journal of Physical Chemistry B, 2004, 108, 9371-9372.	2.6	10
140	Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. International Journal of Biological Macromolecules, 2004, 34, 195-201.	7.5	10
141	Solvation thermodynamics in a van der Waals liquid. Thermochimica Acta, 2003, 399, 181-187.	2.7	9
142	On the cavity size distribution in water and n-hexane. Biophysical Chemistry, 2003, 104, 393-405.	2.8	39
143	Effect of trifluoroethanol on the conformational stability of a hyperthermophilic esterase: a CD study. Biophysical Chemistry, 2003, 104, 407-415.	2.8	10
144	Entropy convergence in hydrophobic hydration: a scaled particle theory analysis. Biophysical Chemistry, 2003, 105, 241-250.	2.8	47

#	Article	IF	CITATIONS
145	Solvation thermodynamics of xenon in n-alkanes, n-alcohols and water. Biophysical Chemistry, 2003, 105, 371-382.	2.8	17
146	Thermal Stability and DNA Binding Activity of a Variant Form of the Sso7d Protein from the Archeon Sulfolobus solfataricus Truncated at Leucine 54. Biochemistry, 2003, 42, 8362-8368.	2.5	22
147	Comment on "A simple molecular thermodynamic theory of hydrophobic hydration―[J. Chem. Phys.116, 2907 (2002)]. Journal of Chemical Physics, 2003, 119, 10448-10449.	3.0	7
148	Size dependence of the solubility of nonpolar compounds in different solvents. Canadian Journal of Chemistry, 2002, 80, 401-412.	1.1	42
149	Denaturing action of urea and guanidine hydrochloride towards two thermophilic esterases. Biochemical Journal, 2002, 367, 857-863.	3.7	61
150	Temperature- and Denaturant-Induced Unfolding of Two Thermophilic Esterases. Biochemistry, 2002, 41, 1364-1371.	2.5	34
151	Comment on "Reevaluation in Interpretation of Hydrophobicity by Scaled Particle Theory― Journal of Physical Chemistry B, 2002, 106, 7713-7716.	2.6	45
152	Size and temperature dependence of hydrocarbon solubility in concentrated aqueous solutions of urea and guanidine hydrochloride. Canadian Journal of Chemistry, 2002, 80, 388-400.	1.1	24
153	Hydration entropy change from the hard sphere model. Biophysical Chemistry, 2002, 101-102, 173-185.	2.8	13
154	Hydration of Aromatic Hydrocarbons. Journal of Physical Chemistry B, 2001, 105, 10367-10372.	2.6	68
155	An analysis of the hydration thermodynamics of the CONH group. Canadian Journal of Chemistry, 2001, 79, 1310-1320.	1.1	5
156	Solvation of a water molecule in cyclohexane and water. Canadian Journal of Chemistry, 2001, 79, 105-109.	1.1	8
157	Comment on "The Mechanism of Hydrophobic Solvation Depends on Solute Radius―J. Phys. Chem. B 2000, 104, 1326. Journal of Physical Chemistry B, 2001, 105, 2079-2081.	2.6	18
158	On the Solubility of Aliphatic Hydrocarbons in 7 M Aqueous Urea. Journal of Physical Chemistry B, 2001, 105, 2632-2637.	2.6	77
159	Contribution of Chain Termini to the Conformational Stability and Biological Activity of Onconase. Biochemistry, 2001, 40, 9097-9103.	2.5	41
160	Thermal Stability of Onconase and Some Mutant Forms. Biocatalysis and Biotransformation, 2001, 19, 459-468.	2.0	0
161	Solvation of a water molecule in cyclohe×ane and water. Canadian Journal of Chemistry, 2001, 79, 105-109.	1.1	6
162	Cavity Thermodynamics and Hydrophobicity. Journal of the Physical Society of Japan, 2000, 69, 1566-1569.	1.6	22

#	Article	IF	CITATIONS
163	Enthalpic and entropic consequences of the removal of disulfide bridges in ribonuclease A. Thermochimica Acta, 2000, 364, 165-172.	2.7	5
164	On the pH dependence of thermodynamic stability of α-amylase inhibitor tendamistat. Thermochimica Acta, 2000, 345, 59-66.	2.7	2
165	Hydration Thermodynamics of N-Methylacetamide. Journal of the Physical Society of Japan, 2000, 69, 3720-3725.	1.6	14
166	On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutions. International Journal of Biological Macromolecules, 2000, 27, 89-97.	7.5	154
167	Solvation thermodynamics of cyclohexane. Canadian Journal of Chemistry, 2000, 78, 1233-1241.	1.1	6
168	Onconase: An Unusually Stable Proteinâ€. Biochemistry, 2000, 39, 8711-8718.	2.5	68
169	On the Solvent Isotope Effect in Hydrophobic Hydration. Journal of Physical Chemistry B, 2000, 104, 9249-9254.	2.6	35
170	Solvation thermodynamics of cyclohe×ane. Canadian Journal of Chemistry, 2000, 78, 1233-1241.	1.1	7
171	Hydrophobicity of benzene. Biophysical Chemistry, 1999, 82, 69-79.	2.8	40
172	Hydration thermodynamics of aliphatic alcohols. Physical Chemistry Chemical Physics, 1999, 1, 3567-3576.	2.8	43
173	Linkage of proton binding to the thermal unfolding of Sso7d from the hyperthermophilic archaebacterium Sulfolobus solfataricus. International Journal of Biological Macromolecules, 1999, 26, 45-53.	7.5	8
174	On the temperature dependence of hydration thermodynamics for noble gases. Physical Chemistry Chemical Physics, 1999, 1, 1877-1886.	2.8	34
175	Prediction of the heat capacity change on thermal denaturation of globular proteins. Thermochimica Acta, 1998, 321, 23-31.	2.7	21
176	Circular dichroism study of ribonuclease A mutants containing the minimal structural requirements for dimerization and swapping. International Journal of Biological Macromolecules, 1998, 23, 277-285.	7.5	9
177	Guanidine-Induced Denaturation of β-Glycosidase fromSulfolobussolfataricusExpressed inEscherichiacoliâ€. Biochemistry, 1998, 37, 14484-14490.	2.5	15
178	Differential Scanning Calorimetry Study of the Thermodynamic Stability of Some Mutants of Sso7d from Sulfolobus solfataricus. Biochemistry, 1998, 37, 10493-10498.	2.5	29
179	Thermodynamics of dissolving gaseous argon in different solvents. Canadian Journal of Chemistry, 1998, 76, 437-444.	1.1	14
180	On the size dependence of hydrophobic hydration. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3345-3352.	1.7	104

#	Article	IF	CITATIONS
181	From Ribonuclease A toward Bovine Seminal Ribonuclease: A Step by Step Thermodynamic Analysisâ€. Biochemistry, 1997, 36, 14403-14408.	2.5	20
182	DSC studies on bovine serum albumin denaturation Effects of ionic strength and SDS concentration. International Journal of Biological Macromolecules, 1997, 20, 193-204.	7.5	198
183	Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Science, 1997, 6, 1682-1693.	7.6	52
184	A Two-State Model of Hydrophobic Hydration That Produces Compensating Enthalpy and Entropy Changes. Journal of the American Chemical Society, 1996, 118, 5163-5168.	13.7	179
185	Temperature-Induced Denaturation of Ribonuclease S: A Thermodynamic Studyâ€. Biochemistry, 1996, 35, 13378-13385.	2.5	32
186	DSC Study of the Thermal Stability of S-Protein and S-Peptide/S-Protein Complexesâ€. Biochemistry, 1996, 35, 13386-13392.	2.5	29