
Ye-Xiang Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9261577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible solid-state supercapacitors: design, fabrication and applications. Energy and Environmental Science, 2014, 7, 2160.	30.8	1,156
2	Flexible Energy torage Devices: Design Consideration and Recent Progress. Advanced Materials, 2014, 26, 4763-4782.	21.0	1,153
3	Oxygenâ€Deficient Hematite Nanorods as Highâ€Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Advanced Materials, 2014, 26, 3148-3155.	21.0	838
4	Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Letters, 2012, 12, 5376-5381.	9.1	627
5	Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni ₃ S ₂ Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption. Journal of the American Chemical Society, 2018, 140, 610-617.	13.7	563
6	Activating CoOOH Porous Nanosheet Arrays by Partial Iron Substitution for Efficient Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 2672-2676.	13.8	474
7	Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific Reports, 2013, 3, 1021.	3.3	427
8	Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts. Journal of the American Chemical Society, 2018, 140, 5118-5126.	13.7	425
9	WO _{3â^'<i>x</i>} /MoO _{3â^'<i>x</i>} Core/Shell Nanowires on Carbon Fabric as an Anode for Allâ€Solidâ€State Asymmetric Supercapacitors. Advanced Energy Materials, 2012, 2, 1328-1332.	19.5	401
10	Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. Journal of Materials Chemistry A, 2015, 3, 1364-1387.	10.3	396
11	Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance. ACS Applied Materials & amp; Interfaces, 2014, 6, 22920-22927.	8.0	370
12	Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Materials Today, 2017, 20, 425-451.	14.2	339
13	A New Benchmark Capacitance for Supercapacitor Anodes by Mixedâ€Valence Sulfurâ€Doped V ₆ O _{13â^'<i>x</i>} . Advanced Materials, 2014, 26, 5869-5875.	21.0	305
14	Efficient Hydrogen Evolution Electrocatalysis Using Cobalt Nanotubes Decorated with Titanium Dioxide Nanodots. Angewandte Chemie - International Edition, 2017, 56, 2960-2964.	13.8	303
15	Co(OH) ₂ @PANI Hybrid Nanosheets with 3D Networks as Highâ€Performance Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 2015, 27, 7051-7057.	21.0	294
16	Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie - International Edition, 2017, 56, 5454-5459.	13.8	292
17	Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Applied Catalysis B: Environmental, 2016, 185, 68-76.	20.2	290
18	Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Materials, 2014, 6, e129-e129.	7.9	284

#	Article	IF	CITATIONS
19	Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Applied Catalysis B: Environmental, 2016, 181, 779-787.	20.2	268
20	Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media. Applied Catalysis B: Environmental, 2019, 251, 181-194.	20.2	260
21	Dualâ€Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiberâ€Shaped Asymmetric Supercapacitors and Microbial Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 6762-6766.	13.8	230
22	Heterojunction Architecture of Nâ€Doped WO ₃ Nanobundles with Ce ₂ S ₃ Nanodots Hybridized on a Carbon Textile Enables a Highly Efficient Flexible Photocatalyst. Advanced Functional Materials, 2019, 29, 1903490.	14.9	223
23	Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate. Journal of Physical Chemistry C, 2013, 117, 10957-10964.	3.1	222
24	Charge Relays via Dual Carbonâ€Actions on Nanostructured BiVO ₄ for High Performance Photoelectrochemical Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	219
25	Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core–double-shell electrodes. Energy and Environmental Science, 2018, 11, 1859-1869.	30.8	216
26	Silica–Polypyrrole Hybrids as Highâ€Performance Metalâ€Free Electrocatalysts for the Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie - International Edition, 2017, 56, 8120-8124.	13.8	214
27	Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes. Nano Letters, 2017, 17, 2490-2495.	9.1	204
28	Three-dimensional nickel nitride (Ni ₃ N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9844-9849.	10.3	203
29	A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9, 2823-2851.	10.4	198
30	A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy and Environmental Science, 2016, 9, 3411-3416.	30.8	197
31	Cu ₂ O–Cu Hybrid Foams as High-Performance Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ACS Catalysis, 2017, 7, 986-991.	11.2	188
32	A Facile Activation Strategy for an MOF-Derived Metal-Free Oxygen Reduction Reaction Catalyst: Direct Access to Optimized Pore Structure and Nitrogen Species. ACS Catalysis, 2017, 7, 6082-6088.	11.2	188
33	High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. Journal of Power Sources, 2016, 308, 7-17.	7.8	182
34	Boosting the photocatalytic performance of (001) BiOI: enhancing donor density and separation efficiency of photogenerated electrons and holes. Chemical Communications, 2016, 52, 5316-5319.	4.1	181
35	Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy, 2015, 11, 348-355.	16.0	180
36	Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials, 2015, 27, 3085-3091.	21.0	177

#	Article	IF	CITATIONS
37	Costâ€Effective Alkaline Water Electrolysis Based on Nitrogen―and Phosphorusâ€Doped Selfâ€&upportive Electrocatalysts. Advanced Materials, 2017, 29, 1702095.	21.0	175
38	A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale, 2013, 5, 4129.	5.6	169
39	Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochimica Acta, 2012, 62, 1-7.	5.2	168
40	All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016, 26, 446-455.	16.0	167
41	Engineering Thin MoS ₂ Nanosheets on TiN Nanorods: Advanced Electrochemical Capacitor Electrode and Hydrogen Evolution Electrocatalyst. ACS Energy Letters, 2017, 2, 1862-1868.	17.4	167
42	Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N- and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 11402-11410.	7.1	167
43	Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 24740-24747.	10.3	164
44	Efficient Charges Separation Using Advanced BiOI-Based Hollow Spheres Decorated with Palladium and Manganese Dioxide Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 2751-2757.	6.7	157
45	Ostwald Ripening Improves Rate Capability of High Mass Loading Manganese Oxide for Supercapacitors. ACS Energy Letters, 2017, 2, 1752-1759.	17.4	146
46	Enhanced BiVO ₄ Photoanode Photoelectrochemical Performance via Borate Treatment and a NiFeOx Cocatalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 8306-8314.	6.7	144
47	Acid Treatment Enables Suppression of Electron–Hole Recombination in Hematite for Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2016, 55, 3403-3407.	13.8	132
48	Phase Boundary Derived Pseudocapacitance Enhanced Nickelâ€Based Composites for Electrochemical Energy Storage Devices. Advanced Energy Materials, 2018, 8, 1701681.	19.5	124
49	Efficient Hydrogen Evolution Activity and Overall Water Splitting of Metallic Co ₄ N Nanowires through Tunable d-Orbitals with Ultrafast Incorporation of FeOOH. ACS Applied Materials & Interfaces, 2019, 11, 5152-5158.	8.0	120
50	Vanadium Nitride Nanowire Supported SnS ₂ Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23205-23215.	8.0	115
51	Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. Journal of Power Sources, 2014, 272, 946-953.	7.8	114
52	Large-Scale Electric-Field Confined Silicon with Optimized Charge-Transfer Kinetics and Structural Stability for High-Rate Lithium-Ion Batteries. ACS Nano, 2020, 14, 7066-7076.	14.6	114
53	Oxygen Defect Modulated Titanium Niobium Oxide on Graphene Arrays: An Openâ€Door for Highâ€Performance 1.4 V Symmetric Supercapacitor in Acidic Aqueous Electrolyte. Advanced Functional Materials, 2018, 28, 1805618.	14.9	110
54	Rational design of atomically dispersed nickel active sites in β-Mo ₂ C for the hydrogen evolution reaction at all pH values. Chemical Communications, 2018, 54, 9901-9904.	4.1	110

#	Article	lF	CITATIONS
55	Enhanced Efficiency of Electron–Hole Separation in Bi ₂ O ₂ CO ₃ for Photocatalysis via Acid Treatment. ChemCatChem, 2018, 10, 1982-1987.	3.7	104
56	Oxygen vacancy–based metal oxides photoanodes in photoelectrochemical water splitting. Materials Today Sustainability, 2022, 18, 100118.	4.1	100
57	Defect Engineering of Bismuth Oxyiodide by IO ₃ [–] Doping for Increasing Charge Transport in Photocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 27859-27867.	8.0	93
58	Dual Doping Induced Interfacial Engineering of Fe ₂ N/Fe ₃ N Hybrids with Favorable dâ€Band towards Efficient Overall Water Splitting. ChemCatChem, 2019, 11, 6051-6060.	3.7	92
59	Intermediates Adsorption Engineering of CO ₂ Electroreduction Reaction in Highly Selective Heterostructure Cuâ€Based Electrocatalysts for CO Production. Advanced Energy Materials, 2019, 9, 1901396.	19.5	92
60	Carbon Dots Sensitized BiOI with Dominant {001} Facets for Superior Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2015, 54, 12788-12794.	3.7	89
61	A Flexible Microsupercapacitor with Integral Photocatalytic Fuel Cell for Self-Charging. ACS Nano, 2019, 13, 8246-8255.	14.6	86
62	Enhancing the Photocatalytic Performance of BiOCl <i>_x</i> l _{1â^'<i>x</i>} by Introducing Surface Disorders and Bi Nanoparticles as Cocatalyst. Advanced Materials Interfaces, 2015, 2, 1500249.	3.7	82
63	Zipping Up NiFe(OH) _{<i>x</i>} -Encapsulated Hematite To Achieve an Ultralow Turn-On Potential for Water Oxidation. ACS Energy Letters, 2019, 4, 1983-1990.	17.4	82
64	Alkali-modified non-precious metal 3D-NiCo ₂ O ₄ nanosheets for efficient formaldehyde oxidation at low temperature. Journal of Materials Chemistry A, 2016, 4, 3648-3654.	10.3	81
65	Ultrathin Bi ₂ MoO ₆ Nanosheets for Photocatalysis: Performance Enhancement by Atomic Interfacial Engineering. ChemistrySelect, 2018, 3, 7423-7428.	1.5	81
66	Stretchable Ni@NiCoP textile for wearable energy storage clothes. Nano Energy, 2019, 55, 506-515.	16.0	79
67	Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating. Nano Energy, 2014, 6, 10-18.	16.0	76
68	Chemically Lithiated TiO ₂ Heterostructured Nanosheet Anode with Excellent Rate Capability and Long Cycle Life for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 25991-26003.	8.0	76
69	Glucose-Induced Formation of Oxygen Vacancy and Bi-Metal Comodified Bi ₅ O ₇ Br Nanotubes for Efficient Performance Photocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 5784-5791.	6.7	72
70	Encapsulated Vanadiumâ€Based Hybrids in Amorphous Nâ€Doped Carbon Matrix as Anode Materials for Lithiumâ€Ion Batteries. Small, 2017, 13, 1702081.	10.0	70
71	Enhanced metallicity boosts hydrogen evolution capability of dual-bimetallic Ni–Fe nitride nanoparticles. Materials Today Physics, 2020, 15, 100267.	6.0	67
72	Indium doped BiOI nanosheets: Preparation, characterization and photocatalytic degradation activity. Applied Surface Science, 2017, 423, 1188-1197.	6.1	66

#	Article	IF	CITATIONS
73	Engineering the Band-Edge of Fe ₂ O ₃ /ZnO Nanoplates via Separate Dual Cation Incorporation for Efficient Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2020, 59, 18865-18872.	3.7	66
74	Low concentration nitric acid facilitate rapid electron–hole separation in vacancy-rich bismuth oxyiodide for photo-thermo-synergistic oxidation of formaldehyde. Applied Catalysis B: Environmental, 2017, 218, 700-708.	20.2	64
75	Freeing the Polarons to Facilitate Charge Transport in BiVO ₄ from Oxygen Vacancies with an Oxidative 2D Precursor. Angewandte Chemie - International Edition, 2019, 58, 19087-19095.	13.8	64
76	Engineering of Oxygen Vacancy and Electricâ€Field Effect by Encapsulating Lithium Titanate in Reduced Graphene Oxide for Superior Lithium Ion Storage. Small Methods, 2019, 3, 1900185.	8.6	64
77	Co ₃ O ₄ @Cuâ€Based Conductive Metal–Organic Framework Core–Shell Nanowire Electrocatalysts Enable Efficient Lowâ€Overallâ€Potential Water Splitting. Chemistry - A European Journal, 2019, 25, 6575-6583.	3.3	64
78	Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC. Applied Catalysis B: Environmental, 2020, 264, 118468.	20.2	59
79	Interface charges redistribution enhanced monolithic etched copper foam-based Cu2O layer/TiO2 nanodots heterojunction with high hydrogen evolution electrocatalytic activity. Applied Catalysis B: Environmental, 2019, 243, 365-372.	20.2	56
80	Synergistic Performance between Visible-Light Photocatalysis and Thermocatalysis for VOCs Oxidation over Robust Ag/F-Codoped SrTiO ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 12766-12773.	3.7	55
81	Anion–Cation Double Doped Co ₃ O ₄ Microtube Architecture to Promote High-Valence Co Species Formation for Enhanced Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 11901-11910.	6.7	50
82	<i>Hybrid implanted hybrid</i> hollow nanocube electrocatalyst facilitates efficient hydrogen evolution activity. Journal of Materials Chemistry A, 2019, 7, 11150-11159.	10.3	48
83	Harnessing hierarchical architectures to trap light for efficient photoelectrochemical cells. Energy and Environmental Science, 2020, 13, 660-684.	30.8	43
84	Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting. Nano Energy, 2014, 10, 313-321.	16.0	42
85	Thin-Layer Indium Oxide and Cobalt Oxyhydroxide Cobalt-Modified BiVO ₄ Photoanode for Solar-Assisted Water Electrolysis. Journal of Physical Chemistry C, 2017, 121, 17150-17159.	3.1	39
86	Engineering Heterostructure-Incorporated Metal Silicates Anchored on Carbon Nanotubes for Highly Durable Lithium Storage. ACS Applied Energy Materials, 2021, 4, 1548-1559.	5.1	39
87	Oxygenâ€Deficient Threeâ€Dimensional Porous Co ₃ O ₄ Nanowires as an Electrode Material for Water Oxidation and Energy Storage. ChemElectroChem, 2017, 4, 2453-2459.	3.4	38
88	Efficient Hydrogen Evolution Electrocatalysis Using Cobalt Nanotubes Decorated with Titanium Dioxide Nanodots. Angewandte Chemie, 2017, 129, 3006-3010.	2.0	37
89	A Robust Versatile Hybrid Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 29356-29364.	8.0	36
90	Photo-enhanced Zn–air batteries with simultaneous highly efficient <i>in situ</i> H ₂ O ₂ generation for wastewater treatment. Journal of Materials Chemistry A, 2019, 7, 14129-14135.	10.3	36

#	Article	IF	CITATIONS
91	Silica–Polypyrrole Hybrids as Highâ€Performance Metalâ€Free Electrocatalysts for the Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie, 2017, 129, 8232-8236.	2.0	35
92	Acid Treatment Enables Suppression of Electron–Hole Recombination in Hematite for Photoelectrochemical Water Splitting. Angewandte Chemie, 2016, 128, 3464-3468.	2.0	27
93	Etched current collector-guided creation of wrinkles in steel-mesh-supported V ₆ O ₁₃ cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 756-764.	10.3	26
94	Molecular cooking: Amino acids trap silicon in carbon matrix to boost lithium-ion storage. Energy Storage Materials, 2022, 46, 344-351.	18.0	25
95	Facile Hydrothermal Synthesis of Three Dimensional Hematite Nanostructures with Enhanced Water Splitting Performance. Electrochimica Acta, 2015, 186, 95-100.	5.2	24
96	Low-valence bicomponent (FeO) _x (MnO) _{1â^'x} nanocrystals embedded in amorphous carbon as high-performance anode materials for lithium storage. Journal of Materials Chemistry A, 2018, 6, 15274-15283.	10.3	24
97	Heterojunction architecture of pTTh nanoflowers with CuOx nanoparticles hybridized for efficient photoelectrocatalytic degradation of organic pollutants. Applied Catalysis B: Environmental, 2020, 277, 119249.	20.2	24
98	Harvesting of Infrared Part of Sunlight to Enhance Polaron Transport and Solar Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	24
99	Hollow Co2P/Co-carbon-based hybrids for lithium storage with improved pseudocapacitance and water oxidation anodes. Journal of Materials Science and Technology, 2020, 55, 203-211.	10.7	23
100	PtCu alloy nanotube arrays supported on carbon fiber cloth as flexible anodes for direct methanol fuel cell. AICHE Journal, 2016, 62, 975-983.	3.6	22
101	Intercalation-type MoP and WP nanodots with abundant phase interface embedded in carbon microflower for enhanced Li storage and reaction kinetics. Electrochimica Acta, 2021, 365, 137354.	5.2	22
102	Freeing the Polarons to Facilitate Charge Transport in BiVO ₄ from Oxygen Vacancies with an Oxidative 2D Precursor. Angewandte Chemie, 2019, 131, 19263-19271.	2.0	21
103	Scalable three-dimensional Ni3P-based composite networks for flexible asymmertric supercapacitors. Chemical Engineering Journal, 2020, 380, 122621.	12.7	21
104	Self-sorting multimetal–organic gel electrocatalysts for a highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 17451-17458.	10.3	21
105	Enhanced lithium storage performance of porous exfoliated carbon fibers <i>via</i> anchored nickel nanoparticles. RSC Advances, 2018, 8, 17056-17059.	3.6	19
106	Lanthanide-Based Dual Modulation in Hematite Nanospindles for Enhancing the Photocatalytic Performance. ACS Applied Nano Materials, 2022, 5, 8557-8565.	5.0	18
107	Using pulverization phenomenon to extend electrodes cyclic life of ternary metal oxides. Materials Today Energy, 2018, 9, 311-318.	4.7	15
108	Enhanced Photoelectrochemical Oxygen Evolution Reaction Ability of Ironâ€Derived Hematite Photoanode with Titanium Modification. Chemistry - A European Journal, 2015, 21, 19250-19256.	3.3	14

#	Article	IF	CITATIONS
109	Layer-stacking porous WCx nanoparticles on carbon cloth as self-supported integrated electrode for hydrogen evolution reaction. Materials Today Energy, 2018, 10, 343-351.	4.7	14
110	3D Hierarchical Nanorod@Nanobowl Array Photoanode with a Tunable Lightâ€Trapping Cutoff and Bottomâ€Selective Field Enhancement for Efficient Solar Water Splitting. Small, 2019, 15, e1804976.	10.0	14
111	Covalently Modified Electrode with Pt Nanoparticles Encapsulated in Porous Organic Polymer for Efficient Electrocatalysis. ACS Applied Nano Materials, 2018, 1, 6477-6482.	5.0	13
112	Porous molybdenum tungsten oxynitrides enable long-life supercapacitors with high capacitance. Journal of Power Sources, 2019, 442, 227247.	7.8	13
113	Phytic Acidâ€Based FeCo Bimetallic Metalâ€Organic Gels for Electrocatalytic Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2021, 16, 3213-3220.	3.3	13
114	Toward Efficient Charge Collection and Light Absorption: A Perspective of Light Trapping for Advanced Photoelectrodes. Journal of Physical Chemistry C, 2019, 123, 18753-18770.	3.1	12
115	Defect Engineering Enhances the Charge Separation of CeO2 Nanorods toward Photocatalytic Methyl Blue Oxidation. Nanomaterials, 2020, 10, 2307.	4.1	12
116	Electrochemical Activation of Heterometallic Nanofibers for Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 2393-2401.	5.0	12
117	In Situ Monitoring Small Energy Storage Change of Electrochromic Supercapacitors via Perovskite Photodetectors. Small Methods, 2020, 4, 1900731.	8.6	11
118	Construction of cobalt vacancies in cobalt telluride to induce fast ionic/electronic diffusion kinetics for lithium-ion half/full batteries. Journal of Materials Science and Technology, 2022, 127, 124-132.	10.7	11
119	Boosting the Photoelectrochemical Water Oxidation at Hematite Photoanode by Innovating a Hierarchical Ball-on-Wire-Array Structure. ACS Applied Energy Materials, 2018, 1, 5836-5841.	5.1	9
120	Epitaxial Growth Modulation of Hollow Topologies for High-Performance Electrocatalysts. CheM, 2018, 4, 2015-2017.	11.7	7
121	Promoting Alternative Flexible Substrate for Electrode Materials to Achieve Enhanced Lithium Storage Properties. ChemistrySelect, 2018, 3, 6965-6971.	1.5	7
122	Multifunctional carbon-confined FeS nanoparticles for a self-supporting and high-capacity cathode in lithium ion battery. Journal of Electroanalytical Chemistry, 2021, 880, 114849.	3.8	7
123	One-Step Synthesis of ZnNCN Nanoparticles with Adjustable Composition for an Advanced Anode in Lithium Ion Battery. ACS Applied Energy Materials, 2021, 4, 4290-4296.	5.1	7
124	Surface engineering enables highly reversible lithium-ion storage and durable structure for advanced silicon anode. Cell Reports Physical Science, 2021, 2, 100486.	5.6	2
125	Electrolyte additive strategy enhancing the electrochemical performance of a soft-packed LiCoO ₂ //graphite full cell. Dalton Transactions, 2022, 51, 8723-8732.	3.3	2