
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9261376/publications.pdf Version: 2024-02-01

DALLI CADLIE

#	Article	IF	CITATIONS
1	Genome Engineering Human ESCs or iPSCs with Cytosine and Adenine Base Editors. Methods in Molecular Biology, 2022, , .	0.9	0
2	Generation of a double insulin and somatostatin reporter line, SCSe001-A-3, for the advancement of stem cell-derived pancreatic islets. Stem Cell Research, 2021, 50, 102112.	0.7	5
3	Restoring RUNX1 deficiency in <i>RUNX1</i> familial platelet disorder by inhibiting its degradation. Blood Advances, 2021, 5, 687-699.	5.2	12
4	RUNX-1 haploinsufficiency causes a marked deficiency of megakaryocyte-biased hematopoietic progenitor cells. Blood, 2021, 137, 2662-2675.	1.4	16
5	Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Frontiers in Endocrinology, 2021, 12, 682625.	3.5	5
6	Study of inherited thrombocytopenia resulting from mutations in ETV6 or RUNX1 using a human pluripotent stem cell model. Stem Cell Reports, 2021, 16, 1458-1467.	4.8	14
7	Modeling genetic platelet disorders with human pluripotent stem cells: mega-progress but wanting more on our plate(let). Current Opinion in Hematology, 2021, 28, 308-314.	2.5	1
8	Loss of TBX3 enhances pancreatic progenitor generation from human pluripotent stem cells. Stem Cell Reports, 2021, 16, 2617-2627.	4.8	9
9	Detection of Rh Antibodies in Patient Plasma Using Genome Engineered Induced Pluripotent Stem Cell-Derived Red Cells. Blood, 2021, 138, 350-350.	1.4	5
10	Generation of human control iPSC line CHOPi004-A from juvenile foreskin fibroblast cells. Stem Cell Research, 2020, 49, 102084.	0.7	2
11	Tropomyosin 1 genetically constrains in vitro hematopoiesis. BMC Biology, 2020, 18, 52.	3.8	8
12	Retinoic acid signaling within pancreatic endocrine progenitors regulates mouse and human \hat{l}^2 cell specification. Development (Cambridge), 2020, 147, .	2.5	23
13	A Dual Reporter EndoC-βH1 Human β-Cell Line for Efficient Quantification of Calcium Flux and Insulin Secretion. Endocrinology, 2020, 161, .	2.8	9
14	A Non-Coding Disease Modifier of Pancreatic Agenesis Identified by Genetic Correction in a Patient-Derived iPSC Line. Cell Stem Cell, 2020, 27, 137-146.e6.	11.1	19
15	Modeling Monogenic Diabetes using Human ESCs Reveals Developmental and Metabolic Deficiencies Caused by Mutations in HNF1A. Cell Stem Cell, 2019, 25, 273-289.e5.	11.1	61
16	Generation of Defined Genomic Modifications Using CRISPR-CAS9 in Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2019, , .	0.3	0
17	Generation of Spinocerebellar Ataxia Type 2 induced pluripotent stem cell lines, CHOPi002-A and CHOPi003-A, from patients with abnormal CAG repeats in the coding region of the ATXN2 gene. Stem Cell Research, 2019, 34, 101361.	0.7	13
18	Highly Efficient CRISPR as9â€Mediated Genome Editing in Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2019, 48, e64.	3.0	20

#	Article	IF	CITATIONS
19	iPreP is a three-dimensional nanofibrillar cellulose hydrogel platform for long-term ex vivo preservation of human islets. JCI Insight, 2019, 4, .	5.0	6
20	The Inherited Platelet Disorder of RUNX1 Haploinsufficiency (Familial Platelet Disorder with) Tj ETQq0 0 0 rgBT Hematopoietic Progenitor Cells: Mechanistic Studies and Drug Correction. Blood, 2019, 134, 220-220.	/Overlock 1 1.4	10 Tf 50 707 1 0
21	A Novel Approach for Generating Platelet-Delivered FVIII: Role of Transient LRP1 Expression during Megakaryopoiesis. Blood, 2019, 134, 1102-1102.	1.4	2
22	Exploring the Interaction Between elF2α Dysregulation, Acute Endoplasmic Reticulum Stress and DYT1 Dystonia in the Mammalian Brain. Neuroscience, 2018, 371, 455-468.	2.3	32
23	Generation of a human Juvenile myelomonocytic leukemia iPSC line, CHOPi001-A, with a mutation in CBL. Stem Cell Research, 2018, 31, 157-160.	0.7	11
24	GATA6 suppression enhances lung specification from human pluripotent stem cells. Journal of Clinical Investigation, 2018, 128, 2944-2950.	8.2	11
25	Janus Kinase (Jak) 1 Inhibition Affects Both Megakaryopoiesis and Thrombopoiesis. Blood, 2018, 132, 2559-2559.	1.4	5
26	GATA6 Plays an Important Role in the Induction of Human Definitive Endoderm, Development of the Pancreas, and Functionality of Pancreatic βÂCells. Stem Cell Reports, 2017, 8, 589-604.	4.8	102
27	ldentifying and enriching platelet-producing human stem cell–derived megakaryocytes using factor V uptake. Blood, 2017, 130, 192-204.	1.4	34
28	Induced Pluripotent Stem Cell–Derived Megakaryocytes and Platelets for Disease Modeling and Future Clinical Applications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2007-2013.	2.4	27
29	Factors Regulating Stem Cell Biology in Development and Disease. Stem Cells International, 2016, 2016, 1-3.	2.5	О
30	Generation of Hermansky–Pudlak Syndrome Type 1 (HPS1) induced pluripotent stem cells (iPSCs). Stem Cell Research, 2016, 16, 233-235.	0.7	7
31	Generation of human control iPS cell line CHOPWT9 from healthy adult peripheral blood mononuclear cells. Stem Cell Research, 2016, 16, 14-16.	0.7	3
32	Understanding platelet generation from megakaryocytes: implications for in vitro–derived platelets. Blood, 2016, 127, 1227-1233.	1.4	93
33	Generation of human control iPS cell line CHOPWT10 from healthy adult peripheral blood mononuclear cells. Stem Cell Research, 2016, 16, 338-341.	0.7	23
34	Generation of Hermansky Pudlak syndrome type 2 (HPS2) induced pluripotent stem cells (iPSCs). Stem Cell Research, 2016, 16, 287-289.	0.7	2
35	Generation of poikiloderma with neutropenia (PN) induced pluripotent stem cells (iPSCs). Stem Cell Research, 2015, 15, 595-597.	0.7	2
36	Emergence of a Stage-Dependent Human Liver Disease Signature with Directed Differentiation of Alpha-1 Antitrypsin-Deficient iPS Cells. Stem Cell Reports, 2015, 4, 873-885.	4.8	77

#	Article	IF	CITATIONS
37	Comparative analysis of human ex vivo–generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale. Blood, 2015, 125, 3627-3636.	1.4	74
38	Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nature Cell Biology, 2015, 17, 580-591.	10.3	243
39	OCT4 Coordinates with WNT Signaling to Pre-pattern Chromatin at the SOX17 Locus during Human ES Cell Differentiation into Definitive Endoderm. Stem Cell Reports, 2015, 5, 490-498.	4.8	29
40	Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. Journal of Clinical Investigation, 2015, 125, 993-1005.	8.2	65
41	Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells. Journal of Clinical Investigation, 2015, 125, 2369-2374.	8.2	29
42	Temporally Distinct Developmental Waves of Erythropoiesis from Human Pluripotent Stem Cells. Blood, 2015, 126, 1170-1170.	1.4	0
43	A Doxycycline-Inducible System for Genetic Correction of iPSC Disease Models. Methods in Molecular Biology, 2014, 1353, 13-23.	0.9	20
44	Dynamics of genomic <scp>H</scp> 3 <scp>K</scp> 27me3 domains and role of <scp>EZH</scp> 2 during pancreatic endocrine specification. EMBO Journal, 2014, 33, 2157-2170.	7.8	70
45	MicroRNA Screen of Human Embryonic Stem Cell Differentiation Reveals miR-105 as an Enhancer of Megakaryopoiesis from Adult CD34+ Cells. Stem Cells, 2014, 32, 1337-1346.	3.2	22
46	The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells. Stem Cell Research, 2014, 12, 441-451.	0.7	49
47	Utilization of the AAVS1 safe harbor locus for hematopoietic specific transgene expression and gene knockdown in human ES cells. Stem Cell Research, 2014, 12, 630-637.	0.7	35
48	High-level transgene expression in induced pluripotent stem cell–derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood, 2014, 123, 753-757.	1.4	54
49	Hematopoietic Differentiation of Pluripotent Stem Cells in Culture. Methods in Molecular Biology, 2014, 1185, 181-194.	0.9	42
50	Inducible Gata1 Suppression As a Novel Strategy to Expand Physiologic Megakaryocyte Production from Embryonic Stem Cells. Blood, 2014, 124, 3846-3846.	1.4	0
51	Endodermal stem cell populations derived from pluripotent stem cells. Current Opinion in Cell Biology, 2013, 25, 265-271.	5.4	8
52	Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood, 2013, 122, 912-921.	1.4	82
53	Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines. Blood, 2013, 122, 2047-2051.	1.4	75
54	AAV-Mediated Gene Therapy for Choroideremia: Preclinical Studies in Personalized Models. PLoS ONE, 2013, 8, e61396.	2.5	71

#	Article	IF	CITATIONS
55	Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17573-17578.	7.1	108
56	Foxa2 and H2A.Z Mediate Nucleosome Depletion during Embryonic Stem Cell Differentiation. Cell, 2012, 151, 1608-1616.	28.9	181
57	Self-Renewing Endodermal Progenitor Lines Generated from Human Pluripotent Stem Cells. Cell Stem Cell, 2012, 10, 371-384.	11.1	190
58	Tissue-Specific Transgene Expression in Induced Pluripotent Stem (iPS) Cell-Derived Megakaryocytes: Correction of Glanzmann Thrombasthenia (GT). Blood, 2012, 120, 387-387.	1.4	0
59	The Aryl Hydrocarbon Receptor (AhR) Regulates the Production of Bipotential Hematopoietic Progenitor Cells. Blood, 2012, 120, 766-766.	1.4	1
60	A high-throughput multiplexed screening assay for optimizing serum-free differentiation protocols of human embryonic stem cells. Stem Cell Research, 2011, 6, 129-142.	0.7	10
61	An Endothelial Cell Niche Induces Hepatic Specification Through Dual Repression of Wnt and Notch Signaling. Stem Cells, 2011, 29, 217-228.	3.2	44
62	Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes. Journal of Clinical Investigation, 2011, 121, 2313-2325.	8.2	50
63	Targeted Gene Correction of Glanzmann Thrombasthenia Induced Pluripotent Stem Cells Restores Surface Expression and Fibrinogen Binding of Integrin αIlbβ3,. Blood, 2011, 118, 4173-4173.	1.4	0
64	Generation of Transgene-Free Lung Disease-Specific Human Induced Pluripotent Stem Cells Using a Single Excisable Lentiviral Stem Cell Cassette Â. Stem Cells, 2010, 28, 1728-1740.	3.2	375
65	Liver Regeneration From Induced Pluripotent Stem Cells. Molecular Therapy, 2010, 18, 2044-2045.	8.2	2
66	Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes and Development, 2009, 23, 2824-2838.	5.9	160
67	Generation of Monoclonal Antibodies Specific for Cell Surface Molecules Expressed on Early Mouse Endoderm. Stem Cells, 2009, 27, 2103-2113.	3.2	38
68	Stem cells unscramble yolk sac hematopoiesis. Blood, 2009, 114, 1455-1456.	1.4	4
69	Epidermal cells rev up reprogramming. Nature Biotechnology, 2008, 26, 1243-1244.	17.5	5
70	Wnt, Activin, and BMP Signaling Regulate Distinct Stages in the Developmental Pathway from Embryonic Stem Cells to Blood. Cell Stem Cell, 2008, 2, 60-71.	11.1	275
71	Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development (Cambridge), 2008, 135, 3447-3458.	2.5	75
72	Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nature Biotechnology, 2007, 25, 1477-1482.	17.5	270

#	Article	IF	CITATIONS
73	BMP-4 is required for hepatic specification of mouse embryonic stem cell–derived definitive endoderm. Nature Biotechnology, 2006, 24, 1402-1411.	17.5	395
74	Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16806-16811.	7.1	507
75	Germ layer induction from embryonic stem cells. Experimental Hematology, 2005, 33, 955-964.	0.4	119
76	Restoration of NK T Cell Development in <i>fyn</i> -Mutant Mice by a TCR Reveals a Requirement for Fyn During Early NK T Cell Ontogeny. Journal of Immunology, 2004, 172, 6093-6100.	0.8	25
77	The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. European Journal of Immunology, 2003, 33, 2160-2167.	2.9	107
78	NK T Cell Precursors Exhibit Differential Cytokine Regulation and Require Itk for Efficient Maturation. Journal of Immunology, 2002, 169, 2397-2406.	0.8	141
79	A Unique Role for Fyn in CNS Myelination. Journal of Neuroscience, 2001, 21, 2039-2047.	3.6	165
80	The Src Family Tyrosine Kinase Fyn Regulates Natural Killer T Cell Development. Journal of Experimental Medicine, 1999, 190, 1189-1196.	8.5	171
81	Activation of the Megakaryocyte-specific Gene Platelet Basic Protein (PBP) by the Ets Family Factor PU.1. Journal of Biological Chemistry, 1997, 272, 26236-26246.	3.4	43