
Michael A Karakassides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9261370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D-printed bioactive scaffolds for bone regeneration bearing carbon dots for bioimaging purposes. Smart Materials in Medicine, 2022, 3, 12-19.	6.7	23
2	Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carbon. Applied Sciences (Switzerland), 2022, 12, 410.	2.5	1
3	Biomass Waste Carbonization in Piranha Solution: A Route to Hypergolic Carbons?. Micro, 2022, 2, 137-153.	2.0	1
4	Use of a Hybrid Porous Carbon Material Derived from Expired Polysaccharides Snack/Iron Salt Exhibiting Magnetic Properties, for Hexavalent Chromium Removal. Polysaccharides, 2022, 3, 326-346.	4.8	1
5	Multifunctional Carbon-Based Hybrid Foams for Shape-Stabilization of Phase Change Materials, Thermal Energy Storage, and Electromagnetic Interference Shielding Functions. Micro, 2022, 2, 390-409.	2.0	2
6	Advanced Cr(VI) sorption properties of activated carbon produced via pyrolysis of the "Posidonia oceanica―seagrass. Journal of Hazardous Materials, 2021, 405, 124274.	12.4	54
7	Development of Poly(L-Lactic Acid)/Chitosan/Basil Oil Active Packaging Films via a Melt-Extrusion Process Using Novel Chitosan/Basil Oil Blends. Processes, 2021, 9, 88.	2.8	16
8	Ultrafine Ni2P Nanoparticle-Decorated r-GO: A Novel Liquid-Phase Approach and Dibenzothiophene Hydro-desulfurization. Industrial & Engineering Chemistry Research, 2021, 60, 4300-4309.	3.7	1
9	Carbon Nanostructures Derived through Hypergolic Reaction of Conductive Polymers with Fuming Nitric Acid at Ambient Conditions. Molecules, 2021, 26, 1595.	3.8	9
10	Hypergolic Ignition of 1,3-Cyclodienes by Fuming Nitric Acid toward the Fast and Spontaneous Formation of Carbon Nanosheets at Ambient Conditions. Micro, 2021, 1, 15-27.	2.0	3
11	Preparation and Characterization of Polystyrene Hybrid Composites Reinforced with 2D and 3D Inorganic Fillers. Micro, 2021, 1, 3-14.	2.0	3
12	Influence of K and Mg substitutions on the synthesis and the properties of CaO-MgO-SiO2/Na2O, P2O5, CaF2 bioactive glasses. Journal of Non-Crystalline Solids, 2021, 573, 121140.	3.1	12
13	Utilization of Tires Waste-Derived Magnetic-Activated Carbon for the Removal of Hexavalent Chromium from Wastewater. Materials, 2021, 14, 34.	2.9	16
14	Nanocarbon from Rocket Fuel Waste: The Case of Furfuryl Alcohol-Fuming Nitric Acid Hypergolic Pair. Nanomaterials, 2021, 11, 1.	4.1	113
15	Nanoporous Carbon Magnetic Hybrid Derived from Waterlock Polymers and Its Application for Hexavalent Chromium Removal from Aqueous Solution. Journal of Carbon Research, 2021, 7, 69.	2.7	3
16	Hypergolic Synthesis of Inorganic Materials by the Reaction of Metallocene Dichlorides with Fuming Nitric Acid at Ambient Conditions: The Case of Photocatalytic Titania. Sci, 2021, 3, 46.	3.0	1
17	On the selective oxidation of H2S by heavy loaded Nanoparticles Embedded in Mesoporous Matrix (NEMMs). Applied Catalysis B: Environmental, 2020, 278, 119338.	20.2	13
18	Hypergolic Materials Synthesis through Reaction of Fuming Nitric Acid with Certain Cyclopentadienyl Compounds. Journal of Carbon Research, 2020, 6, 61.	2.7	9

#	Article	IF	CITATIONS
19	Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions. Nanomaterials, 2020, 10, 1564.	4.1	11
20	Synthesis, Characterization and Mechanical Properties of Nanocomposites Based on Novel Carbon Nanowires and Polystyrene. Applied Sciences (Switzerland), 2020, 10, 5737.	2.5	4
21	CO2 Methanation on Supported Rh Nanoparticles: The combined Effect of Support Oxygen Storage Capacity and Rh Particle Size. Catalysts, 2020, 10, 944.	3.5	35
22	Nanoporous Activated Carbon Derived via Pyrolysis Process of Spent Coffee: Structural Characterization. Investigation of Its Use for Hexavalent Chromium Removal. Applied Sciences (Switzerland), 2020, 10, 8812.	2.5	15
23	Hypergolics in Carbon Nanomaterials Synthesis: New Paradigms and Perspectives. Molecules, 2020, 25, 2207.	3.8	11
24	Functional Carbon Materials Derived through Hypergolic Reactions at Ambient Conditions. Nanomaterials, 2020, 10, 566.	4.1	13
25	Synthesis of glassâ€ceramics in the Na 2 O/K 2 Oâ€CaOâ€MgOâ€SiO 2 â€P 2 O 5 â€CaF 2 system as candidate n for dental applications. International Journal of Applied Ceramic Technology, 2020, 17, 2025-2035.	naterials 2.1	9
26	Synthesis of Highly Crystalline Graphite from Spontaneous Ignition of In Situ Derived Acetylene and Chlorine at Ambient Conditions. Molecules, 2020, 25, 297.	3.8	21
27	Structure and Properties of Epoxy/Fly Ash System: Influence of Filler Content and Surface Modification. Journal of Materials Engineering and Performance, 2019, 28, 4620-4629.	2.5	4
28	Direct production of carbon nanosheets by self-ignition of pyrophoric lithium dialkylamides in air. Materials Letters, 2019, 254, 58-61.	2.6	12
29	Surface chemical modification of macroporous and mesoporous carbon materials: Effect on their textural and catalytic properties. Microporous and Mesoporous Materials, 2019, 279, 334-344.	4.4	15
30	Facile MoS2 Growth on Reduced Graphene-Oxide via Liquid Phase Method. Frontiers in Materials, 2018, 5, .	2.4	5
31	New N-(2-carboxybenzyl)chitosan composite scaffolds containing nanoTiO ₂ or bioactive glass with enhanced cell proliferation for bone-tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 71-81.	3.4	18
32	Structural and Theoretical Study of Strontium Borophosphate Glasses Using Raman Spectroscopy and ab Initio Molecular Orbital Method. Journal of Physical Chemistry B, 2017, 121, 4610-4619.	2.6	35
33	Magnetic Carbon Nanocages: An Advanced Architecture with Surface- and Morphology-Enhanced Removal Capacity for Arsenites. ACS Sustainable Chemistry and Engineering, 2017, 5, 5782-5792.	6.7	31
34	Fullerol–graphene nanobuds: Novel water dispersible and highly conductive nanocarbon for electrochemical sensing. Applied Materials Today, 2017, 9, 71-76.	4.3	10
35	Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide. Applied Materials Today, 2017, 7, 179-184.	4.3	34
36	Efficient and Rapid Photocatalytic Reduction of Hexavalent Chromium Achieved by a Phloroglucinol-Derived Microporous Polymeric Organic Framework Solid. Journal of Physical Chemistry C, 2017, 121, 7303-7311.	3.1	36

#	Article	IF	CITATIONS
37	A biomimetic approach for enhancing adhesion and osteogenic differentiation of adipose-derived stem cells on poly(butylene succinate) composites with bioactive ceramics and glasses. European Polymer Journal, 2017, 87, 159-173.	5.4	10
38	Unexpected orbital magnetism in Bi-rich Bi2Se3 nanoplatelets. NPG Asia Materials, 2016, 8, e271-e271.	7.9	9
39	Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (AsIII) uptake: The evolution of the Fe-phases under ambient conditions. Journal of Hazardous Materials, 2016, 312, 243-253.	12.4	17
40	Synthesis and characterization of calcium oxyboroapatite with bimodal porosity. Journal of Sol-Gel Science and Technology, 2016, 78, 339-346.	2.4	7
41	Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water. Physical Chemistry Chemical Physics, 2016, 18, 10637-10646.	2.8	39
42	Mn-Schiff base modified MCM-41, SBA-15 and CMK-3 NMs as single-site heterogeneous catalysts: Alkene epoxidation with H2O2 incorporation. Journal of Molecular Catalysis A, 2016, 413, 40-55.	4.8	51
43	Carbon Nanostructures Containing Polyhedral Oligomeric Silsesquioxanes (POSS). Current Organic Chemistry, 2016, 20, 662-673.	1.6	12
44	Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 2015, 93, 636-647.	10.3	89
45	Hybrid [polysulfone–Zero Valent Iron] membranes: Synthesis, characterization and application for AsIII remediation. Chemical Engineering Journal, 2015, 281, 651-660.	12.7	24
46	Self-assembled plasmonic templates produced by microwave annealing: applications to surface-enhanced Raman scattering. Nanotechnology, 2015, 26, 205603.	2.6	13
47	Carbon nanotubes/chitin nanowhiskers aerogel achieved by quaternizationâ€induced gelation. Journal of Applied Polymer Science, 2015, 132, .	2.6	12
48	Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon, 2015, 83, 173-179.	10.3	282
49	Intercalation Study of Lowâ€Molecularâ€Weight Hyperbranched Polyethyleneimine into Graphite Oxide. Chemistry - A European Journal, 2014, 20, 8129-8137.	3.3	29
50	Arsenite remediation by an amine-rich graphitic carbon nitride synthesized by a novel low-temperature method. Chemical Engineering Journal, 2014, 256, 347-355.	12.7	36
51	Tailor-made graphite oxide–DAB poly(propylene imine) dendrimer intercalated hybrids and their potential for efficient CO ₂ adsorption. Chemical Communications, 2014, 50, 10967-10970.	4.1	37
52	A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake. Journal of Hazardous Materials, 2014, 270, 118-126.	12.4	17
53	Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 2013, 261, 295-306.	12.4	273
54	Novel Ordered Mesoporous Carbon with Innate Functionalities and Superior Heavy Metal Uptake. Journal of Physical Chemistry C, 2013, 117, 16961-16971.	3.1	20

#	Article	IF	CITATIONS
55	Thiamine pyrophosphate intercalation in layered double hydroxides (LDHs): An active bio-hybrid catalyst for pyruvate decarboxylation. Applied Clay Science, 2013, 75-76, 126-133.	5.2	22
56	<i>In Situ</i> Deposition and Characterization of MoS ₂ Nanolayers on Carbon Nanofibers and Nanotubes. Journal of Physical Chemistry C, 2013, 117, 10135-10142.	3.1	35
57	Synthesis, characterization and non-linear optical response of organophilic carbon dots. Carbon, 2013, 61, 640-643.	10.3	72
58	Surface decoration of carbon nanosheets with amino-functionalized organosilica nanoparticles. Applied Surface Science, 2012, 258, 3703-3709.	6.1	22
59	Low-Temperature Synthesis and Characterization of Gallium Nitride Quantum Dots in Ordered Mesoporous Silica. Journal of Physical Chemistry C, 2012, 116, 1185-1194.	3.1	21
60	Synthesis and Characterization of Î ³ -Fe ₂ O ₃ /Carbon Hybrids and Their Application in Removal of Hexavalent Chromium Ions from Aqueous Solutions. Langmuir, 2012, 28, 3918-3930.	3.5	145
61	Effect of [Fe(CN) ₆] ^{4–} Substitutions on the Spin-Flop Transition of a Layered Nickel Phyllosilicate. Langmuir, 2012, 28, 10289-10295.	3.5	7
62	Naphthalene-based periodic nanoporous organosilicas: II. Hydrogen and methane adsorption and physicochemical study. Microporous and Mesoporous Materials, 2012, 158, 332-338.	4.4	12
63	Naphthalene-based periodic nanoporous organosilicas: I. Synthesis and structural characterization. Microporous and Mesoporous Materials, 2012, 158, 324-331.	4.4	7
64	Magnetic/SiO2 nanocomposite thin films prepared by sol–gel dip coating modified method. Thin Solid Films, 2011, 520, 159-165.	1.8	9
65	Pyrolytic formation of a carbonaceous solid for heavy metal adsorption. Journal of Materials Science, 2011, 46, 975-982.	3.7	12
66	Fabrication of fluorescent nanodiamond@C core–shell hybrids via mild carbonization of sodium cholate–nanodiamond complexes. Journal of Materials Science, 2011, 46, 7912-7916.	3.7	11
67	Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. Journal of Materials Science: Materials in Medicine, 2011, 22, 217-227.	3.6	44
68	Mechanism of heavy metal uptake by a hybrid MCM-41 material: Surface complexation and EPR spectroscopic study. Journal of Colloid and Interface Science, 2010, 343, 374-380.	9.4	29
69	A two-dimensional magnetic hybrid material based on intercalation of a cationic Prussian blue analog in montmorillonite nanoclay. Journal of Colloid and Interface Science, 2010, 348, 393-401.	9.4	11
70	Synthesis and characterization of low dimensional ZnS- and PbS-semiconductor particles on a montmorillonite template. Physical Chemistry Chemical Physics, 2010, 12, 14236.	2.8	18
71	Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt. Nanoscale Research Letters, 2009, 4, 1358-64.	5.7	18
72	Synthesis and characterization of hybrid MCM-41 materials for heavy metal adsorption. Microporous and Mesoporous Materials, 2009, 126, 65-71.	4.4	59

MICHAEL A KARAKASSIDES

#	Article	IF	CITATIONS
73	Bulk nucleated fine grained mono-mineral glass-ceramics from low-silica fly ash. Ceramics International, 2009, 35, 555-558.	4.8	22
74	Aqueous corrosion behaviour of Fe–Ni–B metal glasses. Journal of Alloys and Compounds, 2009, 483, 514-518.	5.5	21
75	Reaction of graphite fluoride with NaOH–KOH eutectic. Journal of Fluorine Chemistry, 2008, 129, 720-724.	1.7	21
76	Synthesis and characterization of sol–gel derived bioactive CaO–SiO2–P2O5 glasses containing magnetic nanoparticles. Journal of Sol-Gel Science and Technology, 2008, 47, 95-101.	2.4	33
77	A neutron diffraction study of alkali cation migration in montmorillonites. Physics and Chemistry of Minerals, 2008, 35, 49-58.	0.8	79
78	Surface Functionalized Carbogenic Quantum Dots. Small, 2008, 4, 455-458.	10.0	796
79	Functionalized SiO2 with N-, S-containing ligands for Pb(II) and Cd(II) adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320, 25-35.	4.7	39
80	Raman structural study of ancient glass artefacts from the island of Rhodes. Journal of Non-Crystalline Solids, 2008, 354, 768-772.	3.1	13
81	Catalytic production of carbon nanotubes over Fe–Ni bimetallic catalysts supported on MgO. Diamond and Related Materials, 2007, 16, 155-160.	3.9	82
82	Synthesis, characterization and gas sorption properties of a molecularly-derived graphite oxide-like foam. Carbon, 2007, 45, 852-857.	10.3	60
83	Preparation of a water-dispersible carbon–silica composite derived from a silylated molecular precursor. Carbon, 2007, 45, 1108-1111.	10.3	2
84	Synthesis and Characterization of ZnS Nanosized Semiconductor Particles within Mesoporous Solids. Journal of Physical Chemistry B, 2006, 110, 22339-22345.	2.6	44
85	Carbon Nanotubes Encapsulating Superconducting Single-Crystalline Tin Nanowires. Nano Letters, 2006, 6, 1131-1135.	9.1	86
86	Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Journal of Non-Crystalline Solids, 2006, 352, 322-328.	3.1	166
87	Bioactive glasses in the system CaO–B2O3–P2O5: Preparation, structural study and in vitro evaluation. Journal of Non-Crystalline Solids, 2006, 352, 390-398.	3.1	184
88	Nanocomposites of polystyrene-b-polyisoprene copolymer with layered silicates and carbon nanotubes. European Polymer Journal, 2006, 42, 2098-2107.	5.4	35
89	Synthesis and characterization of carbon nanotube/metal nanoparticle composites well dispersed in organic media. Carbon, 2006, 44, 848-853.	10.3	85
90	A graphite oxide-like carbogenic material derived from a molecular precursor. Carbon, 2006, 44, 1906-1912.	10.3	21

#	Article	IF	CITATIONS
91	Formation of hydroxyapatite onto glasses of the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials, 2006, 27, 1832-1840.	11.4	155
92	Synthesis of glass–ceramics in the CaO–MgO–SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. Journal of the European Ceramic Society, 2006, 26, 1463-1471.	5.7	116
93	Catalytic production of carbon nanotubes over first row transition metal oxides supported on montmorillonite. Journal of Physics: Conference Series, 2005, 10, 178-181.	0.4	18
94	Incorporation of Fullerene Derivatives into Smectite Clays:Â A New Family of Organicâ^'Inorganic Nanocomposites. Journal of the American Chemical Society, 2004, 126, 8561-8568.	13.7	47
95	Organic derivatization of single-walled carbon nanotubes by clays and intercalated derivatives. Carbon, 2004, 42, 865-870.	10.3	38
96	Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. Journal of Non-Crystalline Solids, 2004, 347, 69-79.	3.1	206
97	Magnetic Fe2O3–Al2O3 composites prepared by a modified wet impregnation method. Journal of Materials Chemistry, 2003, 13, 871-876.	6.7	36
98	Clays as a Host Matrix in the Synthesis of Organic Macrocycles. Chemistry - A European Journal, 2003, 9, 3904-3908.	3.3	21
99	A Novel Route towards Iron- and Chromium-containing MCM-41 Materials through Melt-exchange of the Template. Chemistry Letters, 2003, 32, 38-39.	1.3	3
100	Stability Study of Tyrosinate Radical in a Restricted Phyllomorphous Medium. Langmuir, 2002, 18, 10024-10029.	3.5	12
101	Formation of hydroxyl radicals catalyzed by clay surfaces. Physics and Chemistry of Minerals, 2002, 29, 155-158.	0.8	51
102	Heterogeneous clay-manganese(II) oxidation catalyst. Materials Science and Engineering C, 2002, 22, 113-116.	7.3	26
103	Catalytic synthesis of carbon nanotubes on clay minerals. Carbon, 2002, 40, 2641-2646.	10.3	121
104	Synthesis and characterization of hollow clay microspheres through a resin template approach. Chemical Communications, 2001, , 1518-1519.	4.1	119
105	Ionizing radiation-induced defects in smectite clays. Physics and Chemistry of Minerals, 2001, 28, 285-290.	0.8	35
106	Effect of γ-irradiation on clays and organoclays: a Mössbauer and XRD study. Physics and Chemistry of Minerals, 2000, 27, 514-521.	0.8	46
107	Mössbauer and Infrared Study of Heat-Treated Nontronite. Clays and Clay Minerals, 2000, 48, 68-74.	1.3	11
108	Synthesis and Characterization of Magnetically Modified Clay Composites. Chemistry of Materials, 2000, 12, 2640-2645.	6.7	53

#	Article	IF	CITATIONS
109	Synthesis and characterization of copper containing mesoporous silicas. Journal of Materials Chemistry, 2000, 10, 403-408.	6.7	44
110	Synthesis and Characterization of Iron-Containing MCM-41 Porous Silica by the Exchange Method of the Template. Journal of Physical Chemistry B, 2000, 104, 4375-4380.	2.6	70
111	An infrared reflectance study of Si–O vibrations in thermally treated alkali-saturated montmorillonites. Clay Minerals, 1999, 34, 429-438.	0.6	120
112	Location of Li(I), Cu(II) and Cd(II) in heated montmorillonite: evidence from specular reflectance infrared and electron spin resonance spectroscopies. Journal of Materials Chemistry, 1999, 9, 1553.	6.7	27
113	Magnetically Modified Al2O3Pillared Clays. Chemistry of Materials, 1999, 11, 2754-2759.	6.7	19
114	Clayâ^'Polyvinylpyridine Nanocomposites. Chemistry of Materials, 1999, 11, 2372-2381.	6.7	60
115	The Synthesis of Mesoporous Copper Silicates Using Organofunctional Silicon Alkoxides. Advanced Materials, 1998, 10, 483-486.	21.0	21
116	The Chemistry of Organofunctionalized Silicon Cubanes in Swelling Smectites. Molecular Crystals and Liquid Crystals, 1998, 311, 345-350.	0.3	7
117	Clayâ~'Aminopropylsiloxane Compositions. Chemistry of Materials, 1998, 10, 639-645.	6.7	48
118	Synthesis and characterization of divalent metal containing mesoporous silicas by an ionic templating route. , 1998, , .		0
119	Infrared Reflectance Study of Thermally Treated Li- and Cs-Montmorillonites. Clays and Clay Minerals, 1997, 45, 649-658.	1.3	29
120	Preparation and infrared study of magnesium borate gels with a wide composition range. Journal of Non-Crystalline Solids, 1996, 202, 198-202.	3.1	16
121	Heavy ion RBS characterization of multilayer coatings deposited through the sol-gel technique. Nuclear Instruments & Methods in Physics Research B, 1996, 118, 630-632.	1.4	11
122	Raman and Infrared Structural Investigation ofxRb2O·(1 â^'x)GeO2Glasses. The Journal of Physical Chemistry, 1996, 100, 11755-11765.	2.9	136
123	A structural assessment of glass formation in alkali borates: Melt quenching versus gel drying. Journal of Materials Science Letters, 1995, 14, 268-270.	0.5	7
124	Study of a multilayer wavelength-selective reflector prepared by the sol-gel process. Materials Letters, 1995, 25, 265-269.	2.6	16
125	An electron spin resonance study of the effect of thermal history on the structure of potassium silicate glasses. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 26, 35-39.	3.5	5
126	Lithium conducting borate glasses: evidence for two broad distributions of cation-hosting environments. Journal of Non-Crystalline Solids, 1991, 131-133, 1092-1095.	3.1	25

MICHAEL A KARAKASSIDES

#	Article	IF	CITATIONS
127	On the structure of alkali borate glasses approaching the orthoborate composition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1990, 7, 1-4.	3.5	29
128	New insights into the structure of alkali borate glasses. Journal of Non-Crystalline Solids, 1990, 123, 283-285.	3.1	23
129	The devitrification of lithium metaborate: polymorphism and glass formation. Journal of Non-Crystalline Solids, 1990, 126, 42-51.	3.1	82
130	Infrared reflectance spectra of lithium borate glasses. Journal of Non-Crystalline Solids, 1990, 126, 52-67.	3.1	630
131	Laser-induced crystallization of glassy caesium metaborate studied by Raman spectroscopy. Journal of Non-Crystalline Solids, 1990, 116, 115-122.	3.1	19
132	Spectroscopic study of carbonate retention in high-basicity borate glasses. Journal of Non-Crystalline Solids, 1989, 111, 252-262.	3.1	40
133	Far-infrared spectra of binary alkali borate glasses. Solid State Ionics, 1988, 28-30, 687-692.	2.7	21
134	A spectroscopic study of fluoride containing sodium borate glasses. Solid State Ionics, 1988, 28-30, 783-787.	2.7	21
135	Cation-network interactions in binary alkali metal borate glasses. A far-infrared study. The Journal of Physical Chemistry, 1987, 91, 5807-5813.	2.9	87
136	Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure. The Journal of Physical Chemistry, 1987, 91, 1073-1079.	2.9	584
137	Vibrational spectra of magnesium-sodium-borate glasses. 1. Far-infrared investigation of the cation-site interactions. The Journal of Physical Chemistry, 1987, 91, 1067-1073.	2.9	73
138	Far-infrared spectra of magnesium-sodium-borate glasses. Solid State Communications, 1986, 60, 885-888.	1.9	5
139	A vibrational study of lithium sulfate based fast ionic conducting borate glasses. The Journal of Physical Chemistry, 1986, 90, 4528-4533.	2.9	81