
Steffen F Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9260771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology, 2008, 17, 438-447.	2.4	253
2	Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology, 2007, 1, 243-250.	3.0	195
3	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
4	Nanoproducts – what is actually available to European consumers?. Environmental Science: Nano, 2016, 3, 169-180.	4.3	144
5	Late lessons from early warnings for nanotechnology. Nature Nanotechnology, 2008, 3, 444-447.	31.5	132
6	Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern. Nature Nanotechnology, 2020, 15, 3-4.	31.5	121
7	How to assess exposure of aquatic organisms to manufactured nanoparticles?. Environment International, 2011, 37, 1068-1077.	10.0	118
8	Silver nanoparticle release from commercially available plastic food containers into food simulants. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	106
9	Aquatic Ecotoxicity Testing of Nanoparticles—The Quest To Disclose Nanoparticle Effects. Angewandte Chemie - International Edition, 2016, 55, 15224-15239.	13.8	105
10	Environmental risk analysis for nanomaterials: Review and evaluation of frameworks. Nanotoxicology, 2012, 6, 196-212.	3.0	96
11	The release of silver nanoparticles from commercial toothbrushes. Journal of Hazardous Materials, 2017, 322, 270-275.	12.4	96
12	From macro- to microplastics - Analysis of EU regulation along the life cycle of plastic bags. Environmental Pollution, 2017, 224, 289-299.	7.5	90
13	When enough is enough. Nature Nanotechnology, 2012, 7, 409-411.	31.5	80
14	The known unknowns of nanomaterials: Describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology, 2009, 3, 222-233.	3.0	78
15	Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop. Journal of Nanoparticle Research, 2009, 11, 513-527.	1.9	74
16	NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	74
17	Limits and prospects of the "incremental approach―and the European legislation on the management of risks related to nanomaterials. Regulatory Toxicology and Pharmacology, 2007, 48, 171-183.	2.7	69
18	Setting the limits for engineered nanoparticles in European surface waters – are current approaches appropriate?. Journal of Environmental Monitoring, 2009, 11, 1774.	2.1	67

#	Article	IF	CITATIONS
19	Environmental exposure assessment framework for nanoparticles in solid waste. Journal of Nanoparticle Research, 2014, 16, 2394.	1.9	64
20	Ethical aspects of life cycle assessments of diets. Food Policy, 2016, 59, 139-151.	6.0	57
21	Meeting the Needs for Released Nanomaterials Required for Further Testing—The SUN Approach. Environmental Science & Technology, 2016, 50, 2747-2753.	10.0	55
22	Control banding tools for occupational exposure assessment of nanomaterials — Ready for use in a regulatory context?. NanoImpact, 2016, 2, 1-17.	4.5	54
23	Chemicals regulation and precaution: does REACH really incorporate the precautionary principle. Environmental Science and Policy, 2007, 10, 395-404.	4.9	52
24	Development of Comparative Toxicity Potentials of TiO ₂ Nanoparticles for Use in Life Cycle Assessment. Environmental Science & Technology, 2017, 51, 4027-4037.	10.0	51
25	Regulation of plastic from a circular economy perspective. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100462.	5.9	51
26	European Regulation Affecting Nanomaterials - Review of Limitations and Future Recommendations. Dose-Response, 2012, 10, dose-response.1.	1.6	50
27	Release of nanomaterials from solid nanocomposites and consumer exposure assessment – a forward-looking review. Nanotoxicology, 2016, 10, 641-653.	3.0	49
28	Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plants. Water Research, 2018, 141, 19-31.	11.3	46
29	Advances and challenges towards consumerization of nanomaterials. Nature Nanotechnology, 2020, 15, 964-965.	31.5	46
30	EU Regulation of Nanobiocides: Challenges in Implementing the Biocidal Product Regulation (BPR). Nanomaterials, 2016, 6, 33.	4.1	42
31	A nationwide assessment of plastic pollution in the Danish realm using citizen science. Scientific Reports, 2020, 10, 17773.	3.3	41
32	Environmental risk assessment of chemicals and nanomaterials — The best foundation for regulatory decision-making?. Science of the Total Environment, 2016, 541, 784-794.	8.0	39
33	A critical analysis of the environmental dossiers from the OECD sponsorship programme for the testing of manufactured nanomaterials. Environmental Science: Nano, 2017, 4, 282-291.	4.3	38
34	How important is drinking water exposure for the risks of engineered nanoparticles to consumers?. Nanotoxicology, 2016, 10, 1-9.	3.0	34
35	The precautionary principle and riskâ€risk tradeoffs. Journal of Risk Research, 2008, 11, 423-464.	2.6	32
36	A review of the state-of-the-art for stakeholder analysis with regard to environmental management and regulation. Journal of Environmental Management, 2021, 279, 111773.	7.8	32

#	Article	IF	CITATIONS
37	Proxy Measures for Simplified Environmental Assessment of Manufactured Nanomaterials. Environmental Science & Technology, 2018, 52, 13670-13680.	10.0	30
38	Best practices from nano-risk analysis relevant for other emerging technologies. Nature Nanotechnology, 2019, 14, 998-1001.	31.5	30
39	Environmental challenges for nanomedicine. Nanomedicine, 2008, 3, 605-608.	3.3	27
40	Advancing Alternative Analysis: Integration of Decision Science. Environmental Health Perspectives, 2017, 125, 066001.	6.0	27
41	The ten decrees of nanomaterials regulations. Nature Nanotechnology, 2018, 13, 766-768.	31.5	27
42	Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	26
43	Revising REACH guidance on information requirements and chemical safety assessment for engineered nanomaterials for aquatic ecotoxicity endpoints: recommendations from the EnvNano project. Environmental Sciences Europe, 2017, 29, 14.	5.5	24
44	Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 2019, 6, 505-518.	4.3	24
45	Semi-quantitative analysis of solid waste flows from nano-enabled consumer products in Europe, Denmark and the United Kingdom – Abundance, distribution and management. Waste Management, 2016, 56, 584-592.	7.4	23
46	The applicability of chemical alternatives assessment for engineered nanomaterials. Integrated Environmental Assessment and Management, 2017, 13, 177-187.	2.9	23
47	The role of alternative testing strategies in environmental risk assessment of engineered nanomaterials. Environmental Science: Nano, 2017, 4, 292-301.	4.3	23
48	Influence of natural organic matter on the aquatic ecotoxicity of engineered nanoparticles: Recommendations for environmental risk assessment. NanoImpact, 2020, 20, 100263.	4.5	23
49	Quantitative human health risk assessment along the lifecycle of nano-scale copper-based wood preservatives. Nanotoxicology, 2018, 12, 747-765.	3.0	21
50	Stakeholder analysis with regard to a recent European restriction proposal on microplastics. PLoS ONE, 2020, 15, e0235062.	2.5	21
51	Categorizing Mistaken False Positives in Regulation of Human and Environmental Health. Risk Analysis, 2007, 27, 255-269.	2.7	20
52	Operationalization and application of "early warning signs―to screen nanomaterials for harmful properties. Environmental Sciences: Processes and Impacts, 2013, 15, 190-203.	3.5	19
53	Potential exposure and treatment efficiency of nanoparticles in water supplies based on wastewater reclamation. Environmental Science: Nano, 2015, 2, 191-202.	4.3	19
54	Nanomaterials in the European chemicals legislation – methodological challenges for registration and environmental safety assessment. Environmental Science: Nano, 2021, 8, 731-747.	4.3	18

#	Article	IF	CITATIONS
55	A global view of regulations affecting nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 441-449.	6.1	17
56	Multicriteria mapping of stakeholder preferences in regulating nanotechnology. Journal of Nanoparticle Research, 2010, 12, 1959-1970.	1.9	16
57	Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study. Hydrology and Earth System Sciences, 2015, 19, 1469-1485.	4.9	16
58	Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies. Science of the Total Environment, 2011, 409, 4109-4124.	8.0	15
59	Putting riskâ€risk tradeoffs in perspective: a response to Graham and Wiener. Journal of Risk Research, 2008, 11, 475-483.	2.6	13
60	Towards a nanorisk appraisal framework. Comptes Rendus Physique, 2011, 12, 637-647.	0.9	13
61	DPSIR and Stakeholder Analysis of the Use of Nanosilver. NanoEthics, 2015, 9, 297-319.	0.8	13
62	Current uses of nanomaterials in biocidal products and treated articles in the EU. Environmental Science: Nano, 2016, 3, 1195-1205.	4.3	13
63	International Implications of Labeling Foods Containing Engineered Nanomaterials. Journal of Food Protection, 2016, 79, 830-842.	1.7	12
64	Nanomaterials in Consumer Products. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 359-367.	0.2	11
65	React now regarding nanomaterial regulation. Nature Nanotechnology, 2017, 12, 714-716.	31.5	11
66	Monitoring and modelling of influent patterns, phase distribution and removal of 20 elements in two primary wastewater treatment plants in Norway. Science of the Total Environment, 2020, 725, 138420.	8.0	11
67	The European Union's chemical legislation needs revision. Nature Nanotechnology, 2013, 8, 305-306.	31.5	10
68	Dermal transfer quantification of nanoparticles from nano-enabled surfaces. NanoImpact, 2018, 11, 109-118.	4.5	10
69	Balancing scientific tensions. Nature Nanotechnology, 2014, 9, 870-870.	31.5	9
70	Environmental and health risks of nanorobots: an early review. Environmental Science: Nano, 2020, 7, 2875-2886.	4.3	9
71	SIN List criticism based on misunderstandings. Nature Nanotechnology, 2020, 15, 418-418.	31.5	9
72	Nanotechnology meets circular economy. Nature Nanotechnology, 2022, 17, 682-685.	31.5	8

#	Article	IF	CITATIONS
73	Adequate and anticipatory research on the potential hazards of emerging technologies: a case of myopia and inertia?: TableÂ1. Journal of Epidemiology and Community Health, 2014, 68, 890-895.	3.7	7
74	Application and testing of risk screening tools for nanomaterial risk analysis. Environmental Science: Nano, 2018, 5, 1844-1858.	4.3	7
75	Definition, categorization, and environmental risk assessment of biopharmaceuticals. Science of the Total Environment, 2021, 789, 147884.	8.0	6
76	Considerations for Implementation of Manufactured Nanomaterial Policy and Governance. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 329-350.	0.2	4
77	Should the precautionary principle be implemented in Europe with regard to nanomaterials? Expert interviews. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	3
78	Early warning signs applied to plastic. Nature Reviews Materials, 2022, 7, 68-70.	48.7	3
79	Response to "Regulatory False Positives: True, False, or Uncertain?― Risk Analysis, 2007, 27, 1087-1089.	2.7	1
80	The environmental, social and ethical aspects of multinational corporations exploiting oil resources in Ecuador. WIT Transactions on Biomedicine and Health, 2013, , .	0.0	1
81	Teaching nanosafety. Nature Nanotechnology, 2017, 12, 596-596.	31.5	1
82	Comparative Analysis of Two Teaching Methods for Large Classes. , 0, , .		0